dsipts.models package

Subpackages

Submodules

dsipts.models.Autoformer module

class dsipts.models.Autoformer.Autoformer(label_len: int, d_model: int, dropout_rate: float, kernel_size: int, activation: str = 'torch.nn.ReLU', factor: float = 0.5, n_head: int = 1, n_layer_encoder: int = 2, n_layer_decoder: int = 2, hidden_size: int = 1048, **kwargs)

Bases: Base

Autoformer from https://github.com/cure-lab/LTSF-Linear

Parameters:
  • label_len (int) – see the original implementation, seems like a warmup dimension (the decoder part will produce also some past predictions that are filter out at the end)

  • d_model (int) – embedding dimension of the attention layer

  • dropout_rate (float) – dropout raye

  • kernel_size (int) – kernel size

  • activation (str, optional) – _description_. Defaults to ‘torch.nn.ReLU’.

  • factor (int, optional) – parameter of .autoformer.layers.AutoCorrelation for find the top k. Defaults to 0.5.

  • n_head (int, optional) – number of heads. Defaults to 1.

  • n_layer_encoder (int, optional) – number of encoder layers. Defaults to 2.

  • n_layer_decoder (int, optional) – number of decoder layers. Defaults to 2.

  • hidden_size (int, optional) – output dimension of the transformer layer. Defaults to 1048.

allow_zero_length_dataloader_with_multiple_devices: bool
description = 'Can   handle multivariate output \nCan   handle future covariates\nCan   handle categorical covariates\nCan   handle Quantile loss function'
forward(batch)

Forlward method used during the training loop

Parameters:

batch (dict) – the batch structure. The keys are: y : the target variable(s). This is always present x_num_past: the numerical past variables. This is always present x_num_future: the numerical future variables x_cat_past: the categorical past variables x_cat_future: the categorical future variables idx_target: index of target features in the past array

Returns:

output of the mode;

Return type:

torch.tensor

handle_categorical_variables = True
handle_future_covariates = True
handle_multivariate = True
handle_quantile_loss = True
prepare_data_per_node: bool
training: bool

dsipts.models.CrossFormer module

class dsipts.models.CrossFormer.CrossFormer(https://openreview.net/forum?id=vSVLM2j9eie)

Bases: Base

Parameters:
  • d_model (int) – The dimensionality of the model.

  • hidden_size (int) – The size of the hidden layers.

  • n_head (int) – The number of attention heads.

  • seg_len (int) – The length of the segments.

  • n_layer_encoder (int) – The number of layers in the encoder.

  • win_size (int) – The size of the window for attention.

  • factor (int, optional) – see .crossformer.attn.TwoStageAttentionLayer. Defaults to 10.

  • dropout_rate (float, optional) – The dropout rate. Defaults to 0.1.

  • activation (str, optional) – The activation function to use. Defaults to ‘torch.nn.ReLU’.

  • **kwargs – Additional keyword arguments for the parent class.

Returns:

This method does not return a value.

Return type:

None

Raises:

ValueError – If the activation function is not recognized.

allow_zero_length_dataloader_with_multiple_devices: bool
description = 'Can   handle multivariate output \nCan   handle future covariates\nCan   handle categorical covariates\nCan   handle Quantile loss function'
forward(batch)

Forlward method used during the training loop

Parameters:

batch (dict) – the batch structure. The keys are: y : the target variable(s). This is always present x_num_past: the numerical past variables. This is always present x_num_future: the numerical future variables x_cat_past: the categorical past variables x_cat_future: the categorical future variables idx_target: index of target features in the past array

Returns:

output of the mode;

Return type:

torch.tensor

handle_categorical_variables = True
handle_future_covariates = True
handle_multivariate = True
handle_quantile_loss = True
prepare_data_per_node: bool
training: bool

dsipts.models.D3VAE module

class dsipts.models.D3VAE.D3VAE(scale=0.1, hidden_size=64, num_layers=2, dropout_rate=0.1, diff_steps=200, loss_type='kl', beta_end=0.01, beta_schedule='linear', channel_mult=2, mult=1, num_preprocess_blocks=1, num_preprocess_cells=3, num_channels_enc=16, arch_instance='res_mbconv', num_latent_per_group=6, num_channels_dec=16, groups_per_scale=2, num_postprocess_blocks=1, num_postprocess_cells=2, beta_start=0, freq='h', **kwargs)

Bases: Base

This is the basic model, each model implemented must overwrite the init method and the forward method. The inference step is optional, by default it uses the forward method but for recurrent network you should implement your own method

Parameters:
  • verbose (bool) – Flag to enable verbose logging.

  • past_steps (int) – Number of past time steps to consider.

  • future_steps (int) – Number of future time steps to predict.

  • past_channels (int) – Number of channels in the past input data.

  • future_channels (int) – Number of channels in the future input data.

  • out_channels (int) – Number of output channels.

  • embs_past (List[int]) – List of embedding dimensions for past data.

  • embs_fut (List[int]) – List of embedding dimensions for future data.

  • n_classes (int, optional) – Number of classes for classification. Defaults to 0.

  • persistence_weight (float, optional) – Weight for persistence in loss calculation. Defaults to 0.0.

  • loss_type (str, optional) – Type of loss function to use (‘l1’ or ‘mse’). Defaults to ‘l1’.

  • quantiles (List[int], optional) – List of quantiles for quantile loss. Defaults to an empty list.

  • reduction_mode (str, optional) – Mode for reduction for categorical embedding layer (‘mean’, ‘sum’, ‘none’). Defaults to ‘mean’.

  • use_classical_positional_encoder (bool, optional) – Flag to use classical positional encoding or using embedding layer also for the positions. Defaults to False.

  • emb_dim (int, optional) – Dimension of categorical embeddings. Defaults to 16.

  • optim (Union[str, None], optional) – Optimizer type. Defaults to None.

  • optim_config (dict, optional) – Configuration for the optimizer. Defaults to None.

  • scheduler_config (dict, optional) – Configuration for the learning rate scheduler. Defaults to None.

Raises:
  • AssertionError – If the number of quantiles is not equal to 3 when quantiles are provided.

  • AssertionError – If the number of output channels is not 1 for classification tasks.

forward(batch: dict) tensor

Forlward method used during the training loop

Parameters:

batch (dict) – the batch structure. The keys are: y : the target variable(s). This is always present x_num_past: the numerical past variables. This is always present x_num_future: the numerical future variables x_cat_past: the categorical past variables x_cat_future: the categorical future variables idx_target: index of target features in the past array

Returns:

output of the mode;

Return type:

torch.tensor

inference(batch: dict) tensor

Care here, we need to implement it because for predicting the N-step it will use the prediction at step N-1. TODO fix if because I did not implement the know continuous variable presence here

Parameters:

batch (dict) – batch of the dataloader

Returns:

result

Return type:

torch.tensor

dsipts.models.D3VAE.copy_parameters(net_source: Module, net_dest: Module, strict=True) None

Copies parameters from one network to another. :param net_source: Input network. :param net_dest: Output network. :param strict: whether to strictly enforce that the keys

in state_dict match the keys returned by this module’s state_dict() function. Default: True

dsipts.models.Diffusion module

class dsipts.models.Diffusion.Diffusion(d_model: int, out_channels: int, past_steps: int, future_steps: int, past_channels: int, future_channels: int, embs: List[int], learn_var: bool, cosine_alpha: bool, diffusion_steps: int, beta: float, gamma: float, n_layers_RNN: int, d_head: int, n_head: int, dropout_rate: float, activation: str, subnet: int, perc_subnet_learning_for_step: float, persistence_weight: float = 0.0, loss_type: str = 'l1', quantiles: List[float] = [], optim: str | None = None, optim_config: dict | None = None, scheduler_config: dict | None = None, **kwargs)

Bases: Base

Denoising Diffusion Probabilistic Model

Parameters:
  • d_model (int)

  • out_channels (int) – number of target variables

  • past_steps (int) – size of past window

  • future_steps (int) – size of future window to be predicted

  • past_channels (int) – number of variables available for the past context

  • future_channels (int) – number of variables known in the future, available for forecasting

  • embs (list[int]) – categorical variables dimensions for embeddings

  • learn_var (bool) – Flag to make the model train the posterior variance (if True) or use the variance of posterior distribution

  • cosine_alpha (bool) – Flag for the generation of alphas and betas

  • diffusion_steps (int) – number of noising steps for the initial sample

  • beta (float) – starting variable to generate the diffusion perturbations. Ignored if cosine_alpha == True

  • gamma (float) – trade_off variable to balance loss over noise prediction and NegativeLikelihood/KL_Divergence.

  • n_layers_RNN (int) – param for subnet

  • d_head (int) – param for subnet

  • n_head (int) – param for subnet

  • dropout_rate (float) – param for subnet

  • activation (str) – param for subnet

  • subnet (int) – =1 for attention subnet, =2 for linear subnet. Others can be added(wait for Black Friday for discounts)

  • perc_subnet_learning_for_step (float) – percentage to choose how many subnet has to be trained for every batch. Decrease this value if the loss blows up.

  • persistence_weight (float, optional) – Defaults to 0.0.

  • loss_type (str, optional) – Defaults to ‘l1’.

  • quantiles (List[float], optional) – Only [] accepted. Defaults to [].

  • optim (Union[str,None], optional) – Defaults to None.

  • optim_config (Union[dict,None], optional) – Defaults to None.

  • scheduler_config (Union[dict,None], optional) – Defaults to None.

allow_zero_length_dataloader_with_multiple_devices: bool
cat_categorical_vars(batch: dict)

Extracting categorical context about past and future

Parameters:

batch (dict) – Keys checked -> [‘x_cat_past’, ‘x_cat_future’]

Returns:

cat_emb_past, cat_emb_fut

Return type:

List[torch.Tensor, torch.Tensor]

description = 'Can NOT  handle multivariate output \nCan   handle future covariates\nCan   handle categorical covariates\nCan NOT  handle Quantile loss function'
forward(batch: dict) float

training process of the diffusion network

Parameters:

batch (dict) – variables loaded

Returns:

total loss about the prediction of the noises over all subnets extracted

Return type:

float

gaussian_likelihood(x, mean, var)
gaussian_log_likelihood(x, mean, var)
handle_categorical_variables = True
handle_future_covariates = True
handle_multivariate = False
handle_quantile_loss = False
improving_weight_during_training()

Each time we sample from multinomial we subtract the minimum for more precise sampling, avoiding great learning differences among subnets

This lead to more stable inference also in early training, mainly for common context embedding.

For probabilistic reason, weights has to be >0, so we subtract min-1

inference(batch: dict) Tensor

Inference process to forecast future y

Parameters:

batch (dict) – Keys checked [‘x_num_past, ‘idx_target’, ‘x_num_future’, ‘x_cat_past’, ‘x_cat_future’]

Returns:

generated sequence [batch_size, future_steps, num_var]

Return type:

torch.Tensor

normal_kl(mean1, logvar1, mean2, logvar2)

Compute the KL divergence between two gaussians. Also called relative entropy. KL divergence of P from Q is the expected excess surprise from using Q as a model when the actual distribution is P. KL(P||Q) = P*log(P/Q) or -P*log(Q/P)

# In the context of machine learning, KL(P||Q) is often called the ‘information gain’ # achieved if P would be used instead of Q which is currently used.

Shapes are automatically broadcasted, so batches can be compared to scalars, among other use cases.

prepare_data_per_node: bool
q_sample(x_start: Tensor, t: int) List[Tensor]

Diffuse x_start for t diffusion steps.

In other words, sample from q(x_t | x_0).

Also, compute the mean and variance of the diffusion posterior:

q(x_{t-1} | x_t, x_0)

Posterior mean and variance are the ones to be predicted

Parameters:
  • x_start (torch.Tensor) – values to be predicted

  • t (int) – diffusion step

Returns:

q_sample, posterior mean, posterior log variance and the actual noise

Return type:

List[torch.Tensor, torch.Tensor, torch.Tensor]

remove_var(tensor: Tensor, indexes_to_exclude: list, dimension: int) Tensor

Function to remove variables from tensors in chosen dimension and position

Parameters:
  • tensor (torch.Tensor) – starting tensor

  • indexes_to_exclude (list) – index of the chosen dimension we want t oexclude

  • dimension (int) – dimension of the tensor on which we want to work (not list od dims!!)

Returns:

new tensor without the chosen variables

Return type:

torch.Tensor

training: bool
class dsipts.models.Diffusion.SubNet1(aux_past_ch, aux_fut_ch, learn_var: bool, output_channel: int, d_model: int, d_head: int, n_head: int, activation: str, dropout_rate: float)

Bases: Module

-> SUBNET of the DIFFUSION MODEL (DDPM)

It starts with an autoregressive LSTM Network computation of epsilon, then subtracted to ‘y_noised’ tensor. This is always possible! Now we have an approximation of our ‘eps_hat’, that at the end will pass in a residual connection with its embedded version ‘emb_eps_hat’.

‘emb_eps_hat’ will be update with respect to available info about categorical values of our serie: Through an ATTENTION Network we compare past categorical with future categorical to update the embedded noise predicted.

Also, if we have values about auxiliary numerical variables both in past and future, the changes of these variables will be fetched by another ATTENTION Network.

The goal is ensure valuable computations for ‘eps’ always, and then updating things if we have enough data. Both attentions uses { Q = *_future, K = *_past, V = y_past } using as much as possible context variables for better updates.

Parameters:
  • learn_var (bool) – set if the network has to learn the optim variance of each step

  • output_channel (int) – number of variables to be predicted

  • future_steps (int) – number of step in the future, so the number of timesstep to be predicted

  • d_model (int) – hidden dimension of the model

  • num_layers_RNN (int) – number of layers for autoregressive prediction

  • d_head (int) – number of heads for Attention Networks

  • n_head (int) – hidden dimension of heads for Attention Networks

  • dropout_rate (float)

forward(y_noised: Tensor, y_past: Tensor, cat_past: Tensor, cat_fut: Tensor, num_past: Tensor | None = None, num_fut: Tensor | None = None)

‘DIFFUSION SUBNET :param y_noised: [B, future_step, num_var] :type y_noised: torch.Tensor :param y_past: [B, past_step, num_var] :type y_past: torch.Tensor :param cat_past: [B, past_step, d_model]. Defaults to None. :type cat_past: torch.Tensor, optional :param cat_fut: [B, future_step, d_model]. Defaults to None. :type cat_fut: torch.Tensor, optional :param num_past: [B, past_step, d_model]. Defaults to None. :type num_past: torch.Tensor, optional :param num_fut: [B, future_step, d_model]. Defaults to None. :type num_fut: torch.Tensor, optional

Returns:

predicted noise [B, future_step, num_var]. According to ‘learn_var’ param in initialization, the subnet returns another tensor of same size about the variance

Return type:

torch.Tensor

class dsipts.models.Diffusion.SubNet2(aux_past_ch, aux_fut_ch, learn_var: bool, past_steps, future_steps, output_channel: int, d_model: int, activation: str, dropout_rate: float)

Bases: Module

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(y_noised: Tensor, y_past: Tensor, cat_past: Tensor, cat_fut: Tensor, num_past: Tensor | None = None, num_fut: Tensor | None = None)

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

class dsipts.models.Diffusion.SubNet3(learn_var, flag_aux_num, num_var, d_model, pred_step, num_layers, d_head, n_head, dropout)

Bases: Module

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(y_noised: Tensor, y_past: Tensor, cat_past: Tensor, cat_fut: Tensor, num_past: Tensor | None = None, num_fut: Tensor | None = None)

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

dsipts.models.DilatedConv module

class dsipts.models.DilatedConv.Block(input_channels: int, kernel_size: int, output_channels: int, input_size: int, sum_layers: bool)

Bases: Module

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(x: tensor) tensor

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

class dsipts.models.DilatedConv.DilatedConv(sum_layers: bool, hidden_RNN: int, num_layers_RNN: int, kind: str, kernel_size: int, activation: str = 'torch.nn.ReLU', remove_last=False, dropout_rate: float = 0.1, use_bn: bool = False, use_glu: bool = True, glu_percentage: float = 1.0, **kwargs)

Bases: Base

Custom encoder-decoder

Parameters:
  • sum_layers (bool) – Flag indicating whether to sum the layers.

  • hidden_RNN (int) – Number of hidden units in the RNN.

  • num_layers_RNN (int) – Number of layers in the RNN.

  • kind (str) – Type of RNN to use (e.g., ‘LSTM’, ‘GRU’).

  • kernel_size (int) – Size of the convolutional kernel.

  • activation (str, optional) – Activation function to use. Defaults to ‘torch.nn.ReLU’.

  • remove_last (bool, optional) – Flag to indicate whether to remove the last element in the sequence. Defaults to False.

  • dropout_rate (float, optional) – Dropout rate for regularization. Defaults to 0.1.

  • use_bn (bool, optional) – Flag to indicate whether to use batch normalization. Defaults to False.

  • use_glu (bool, optional) – Flag to indicate whether to use Gated Linear Units (GLU). Defaults to True.

  • glu_percentage (float, optional) – Percentage of GLU to apply. Defaults to 1.0.

  • **kwargs – Additional keyword arguments.

Returns:

None

allow_zero_length_dataloader_with_multiple_devices: bool
description = 'Can   handle multivariate output \nCan   handle future covariates\nCan   handle categorical covariates\nCan   handle Quantile loss function'
forward(batch)

It is mandatory to implement this method

Parameters:

batch (dict) – batch of the dataloader

Returns:

result

Return type:

torch.tensor

handle_categorical_variables = True
handle_future_covariates = True
handle_multivariate = True
handle_quantile_loss = True
inference(batch: dict) tensor

Usually it is ok to return the output of the forward method but sometimes not (e.g. RNN)

Parameters:

batch (dict) – batch

Returns:

result

Return type:

torch.tensor

prepare_data_per_node: bool
training: bool
class dsipts.models.DilatedConv.GLU(d_model: int)

Bases: Module

Gated Linear Unit, ‘Gate’ block in TFT paper Sub net of GRN: linear(x) * sigmoid(linear(x)) No dimension changes

Parameters:

d_model (int) – model dimension

forward(x: Tensor) Tensor

Gated Linear Unit Sub net of GRN: linear(x) * sigmoid(linear(x)) No dimension changes: [bs, seq_len, d_model]

Parameters:

x (torch.Tensor)

Returns:

torch.Tensor

dsipts.models.DilatedConvED module

class dsipts.models.DilatedConvED.Block(input_channels: int, kernel_size: int, output_channels: int, input_size: int, sum_layers: bool)

Bases: Module

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(x: tensor) tensor

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

class dsipts.models.DilatedConvED.DilatedConvED(sum_layers: bool, hidden_RNN: int, num_layers_RNN: int, kind: str, kernel_size: int, dropout_rate: float = 0.1, use_bn: bool = False, use_cumsum: bool = True, use_bilinear: bool = False, activation: str = 'torch.nn.ReLU', **kwargs)

Bases: Base

Initialize the model with specified parameters.

Parameters:
  • sum_layers (bool) – Flag indicating whether to sum layers in the encoder/decoder blocks.

  • hidden_RNN (int) – Number of hidden units in the RNN.

  • num_layers_RNN (int) – Number of layers in the RNN.

  • kind (str) – Type of RNN to use (‘lstm’ or ‘gru’).

  • kernel_size (int) – Size of the convolutional kernel.

  • dropout_rate (float, optional) – Dropout rate for regularization. Defaults to 0.1.

  • use_bn (bool, optional) – Flag to use batch normalization. Defaults to False.

  • use_cumsum (bool, optional) – Flag to use cumulative sum. Defaults to True.

  • use_bilinear (bool, optional) – Flag to use bilinear layers. Defaults to False.

  • activation (str, optional) – Activation function to use. Defaults to ‘torch.nn.ReLU’.

  • **kwargs – Additional keyword arguments.

Raises:

ValueError – If the specified activation function is not recognized or if the kind is not ‘lstm’ or ‘gru’.

allow_zero_length_dataloader_with_multiple_devices: bool
description = 'Can   handle multivariate output \nCan   handle future covariates\nCan   handle categorical covariates\nCan   handle Quantile loss function'
forward(batch)

It is mandatory to implement this method

Parameters:

batch (dict) – batch of the dataloader

Returns:

result

Return type:

torch.tensor

handle_categorical_variables = True
handle_future_covariates = True
handle_multivariate = True
handle_quantile_loss = True
prepare_data_per_node: bool
training: bool
class dsipts.models.DilatedConvED.GLU(d_model: int)

Bases: Module

Gated Linear Unit, ‘Gate’ block in TFT paper Sub net of GRN: linear(x) * sigmoid(linear(x)) No dimension changes

Parameters:

d_model (int) – model dimension

forward(x: Tensor) Tensor

Gated Linear Unit Sub net of GRN: linear(x) * sigmoid(linear(x)) No dimension changes: [bs, seq_len, d_model]

Parameters:

x (torch.Tensor)

Returns:

torch.Tensor

dsipts.models.Duet module

class dsipts.models.Duet.Duet(factor: int, d_model: int, n_head: int, n_layer: int, CI: bool, d_ff: int, noisy_gating: bool, num_experts: int, kernel_size: int, hidden_size: int, k: int, dropout_rate: float = 0.1, activation: str = '', **kwargs)

Bases: Base

Initializes the model with the specified parameters. https://github.com/decisionintelligence/DUET

Parameters:
  • factor (int) – The factor for attention scaling. NOT USED but in the original implementation

  • d_model (int) – The dimensionality of the model.

  • n_head (int) – The number of attention heads.

  • n_layer (int) – The number of layers in the encoder.

  • CI (bool) – Perform channel independent operations.

  • d_ff (int) – The dimensionality of the feedforward layer.

  • noisy_gating (bool) – Flag to indicate if noisy gating is used.

  • num_experts (int) – The number of experts in the mixture of experts.

  • kernel_size (int) – The size of the convolutional kernel.

  • hidden_size (int) – The size of the hidden layer.

  • k (int) – The number of clusters for the linear extractor.

  • dropout_rate (float, optional) – The dropout rate. Defaults to 0.1.

  • activation (str, optional) – The activation function to use. Defaults to ‘’.

  • **kwargs – Additional keyword arguments.

Raises:

ValueError – If the activation function is not recognized.

allow_zero_length_dataloader_with_multiple_devices: bool
description = 'Can   handle multivariate output \nCan   handle future covariates\nCan   handle categorical covariates\nCan   handle Quantile loss function'
forward(batch: dict) float

Forlward method used during the training loop

Parameters:

batch (dict) – the batch structure. The keys are: y : the target variable(s). This is always present x_num_past: the numerical past variables. This is always present x_num_future: the numerical future variables x_cat_past: the categorical past variables x_cat_future: the categorical future variables idx_target: index of target features in the past array

Returns:

output of the mode;

Return type:

torch.tensor

handle_categorical_variables = True
handle_future_covariates = True
handle_multivariate = True
handle_quantile_loss = True
prepare_data_per_node: bool
training: bool

dsipts.models.ITransformer module

class dsipts.models.ITransformer.ITransformer(hidden_size: int, d_model: int, n_head: int, n_layer_decoder: int, use_norm: bool, class_strategy: str = 'projection', dropout_rate: float = 0.1, activation: str = '', **kwargs)

Bases: Base

Initialize the ITransformer model for time series forecasting.

This class implements the Inverted Transformer architecture as described in the paper “ITRANSFORMER: INVERTED TRANSFORMERS ARE EFFECTIVE FOR TIME SERIES FORECASTING” (https://arxiv.org/pdf/2310.06625).

Parameters:
  • hidden_size (int) – The first embedding size of the model (‘r’ in the paper).

  • d_model (int) – The second embedding size (r^{tilda} in the model). Should be smaller than hidden_size.

  • n_head (int) – The number of attention heads.

  • n_layer_decoder (int) – The number of layers in the decoder.

  • use_norm (bool) – Flag to indicate whether to use normalization.

  • class_strategy (str, optional) – The strategy for classification, can be ‘projection’, ‘average’, or ‘cls_token’. Defaults to ‘projection’.

  • dropout_rate (float, optional) – The dropout rate for regularization. Defaults to 0.1.

  • activation (str, optional) – The activation function to be used. Defaults to ‘’.

  • **kwargs – Additional keyword arguments.

Raises:

ValueError – If the activation function is not recognized.

allow_zero_length_dataloader_with_multiple_devices: bool
description = 'Can   handle multivariate output \nCan   handle future covariates\nCan   handle categorical covariates\nCan   handle Quantile loss function'
forecast(x_enc, x_mark_enc, x_dec, x_mark_dec)
forward(batch: dict) float

Forlward method used during the training loop

Parameters:

batch (dict) – the batch structure. The keys are: y : the target variable(s). This is always present x_num_past: the numerical past variables. This is always present x_num_future: the numerical future variables x_cat_past: the categorical past variables x_cat_future: the categorical future variables idx_target: index of target features in the past array

Returns:

output of the mode;

Return type:

torch.tensor

handle_categorical_variables = True
handle_future_covariates = True
handle_multivariate = True
handle_quantile_loss = True
prepare_data_per_node: bool
training: bool

dsipts.models.Informer module

class dsipts.models.Informer.Informer(d_model: int, hidden_size: int, n_layer_encoder: int, n_layer_decoder: int, mix: bool = True, activation: str = 'torch.nn.ReLU', remove_last=False, attn: str = 'prob', distil: bool = True, factor: int = 5, n_head: int = 1, dropout_rate: float = 0.1, **kwargs)

Bases: Base

Initialize the model with specified parameters. hhttps://github.com/zhouhaoyi/Informer2020/tree/main/models

Parameters:
  • d_model (int) – The dimensionality of the model.

  • hidden_size (int) – The size of the hidden layers.

  • n_layer_encoder (int) – The number of layers in the encoder.

  • n_layer_decoder (int) – The number of layers in the decoder.

  • mix (bool, optional) – Whether to use mixed attention. Defaults to True.

  • activation (str, optional) – The activation function to use. Defaults to ‘torch.nn.ReLU’.

  • remove_last (bool, optional) – Whether to remove the last layer. Defaults to False.

  • attn (str, optional) – The type of attention mechanism to use. Defaults to ‘prob’.

  • distil (bool, optional) – Whether to use distillation. Defaults to True.

  • factor (int, optional) – The factor for attention. Defaults to 5.

  • n_head (int, optional) – The number of attention heads. Defaults to 1.

  • dropout_rate (float, optional) – The dropout rate. Defaults to 0.1.

  • **kwargs – Additional keyword arguments.

Raises:

ValueError – If any of the parameters are invalid.

Notes

Ensure to set up split_params: shift: ${model_configs.future_steps} as it is required!!

allow_zero_length_dataloader_with_multiple_devices: bool
description = 'Can   handle multivariate output \nCan   handle future covariates\nCan   handle categorical covariates\nCan   handle Quantile loss function'
forward(batch)

Forlward method used during the training loop

Parameters:

batch (dict) – the batch structure. The keys are: y : the target variable(s). This is always present x_num_past: the numerical past variables. This is always present x_num_future: the numerical future variables x_cat_past: the categorical past variables x_cat_future: the categorical future variables idx_target: index of target features in the past array

Returns:

output of the mode;

Return type:

torch.tensor

handle_categorical_variables = True
handle_future_covariates = True
handle_multivariate = True
handle_quantile_loss = True
prepare_data_per_node: bool
training: bool

dsipts.models.LinearTS module

class dsipts.models.LinearTS.LinearTS(kernel_size: int, hidden_size: int, dropout_rate: float = 0.1, activation: str = 'torch.nn.ReLU', kind: str = 'linear', use_bn: bool = False, simple: bool = False, **kwargs)

Bases: Base

Initialize the model with specified parameters. Linear model from https://github.com/cure-lab/LTSF-Linear/blob/main/run_longExp.py

Parameters:
  • kernel_size (int) – Kernel dimension for the initial moving average.

  • hidden_size (int) – Hidden size of the linear block.

  • dropout_rate (float, optional) – Dropout rate in Dropout layers. Default is 0.1.

  • activation (str, optional) – Activation function in PyTorch. Default is ‘torch.nn.ReLU’.

  • kind (str, optional) – Type of model, can be ‘linear’, ‘dlinear’ (de-trending), or ‘nlinear’ (differential). Defaults to ‘linear’.

  • use_bn (bool, optional) – If True, Batch Normalization layers will be added and Dropouts will be removed. Default is False.

  • simple (bool, optional) – If True, the model used is the same as illustrated in the paper; otherwise, a more complex model with the same idea is used. Default is False.

  • **kwargs – Additional keyword arguments for the parent class.

Raises:

ValueError – If an invalid activation function is provided.

allow_zero_length_dataloader_with_multiple_devices: bool
description = 'Can   handle multivariate output \nCan   handle future covariates\nCan   handle categorical covariates\nCan   handle Quantile loss function\n THE SIMPLE IMPLEMENTATION DOES NOT USE CATEGORICAL NOR FUTURE VARIABLES'
forward(batch)

Forlward method used during the training loop

Parameters:

batch (dict) – the batch structure. The keys are: y : the target variable(s). This is always present x_num_past: the numerical past variables. This is always present x_num_future: the numerical future variables x_cat_past: the categorical past variables x_cat_future: the categorical future variables idx_target: index of target features in the past array

Returns:

output of the mode;

Return type:

torch.tensor

handle_categorical_variables = True
handle_future_covariates = True
handle_multivariate = True
handle_quantile_loss = True
prepare_data_per_node: bool
training: bool
class dsipts.models.LinearTS.moving_avg(kernel_size, stride)

Bases: Module

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(x)

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

class dsipts.models.LinearTS.series_decomp(kernel_size)

Bases: Module

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(x)

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

dsipts.models.PatchTST module

class dsipts.models.PatchTST.PatchTST(d_model: int, patch_len: int, kernel_size: int, decomposition: bool = True, activation: str = 'torch.nn.ReLU', n_head: int = 1, n_layer: int = 2, stride: int = 8, remove_last: bool = False, hidden_size: int = 1048, dropout_rate: float = 0.1, **kwargs)

Bases: Base

Initializes the model with specified parameters.https://github.com/yuqinie98/PatchTST/blob/main/

Parameters:
  • d_model (int) – The dimensionality of the model.

  • patch_len (int) – The length of the patches.

  • kernel_size (int) – The size of the kernel for convolutional layers.

  • decomposition (bool, optional) – Whether to use decomposition. Defaults to True.

  • activation (str, optional) – The activation function to use. Defaults to ‘torch.nn.ReLU’.

  • n_head (int, optional) – The number of attention heads. Defaults to 1.

  • n_layer (int, optional) – The number of layers in the model. Defaults to 2.

  • stride (int, optional) – The stride for convolutional layers. Defaults to 8.

  • remove_last (bool, optional) – Whether to remove the last layer. Defaults to False.

  • hidden_size (int, optional) – The size of the hidden layers. Defaults to 1048.

  • dropout_rate (float, optional) – The dropout rate for regularization. Defaults to 0.1.

  • **kwargs – Additional keyword arguments.

Raises:

ValueError – If the activation function is not recognized.

allow_zero_length_dataloader_with_multiple_devices: bool
description = 'Can   handle multivariate output \nCan NOT  handle future covariates\nCan   handle categorical covariates\nCan   handle Quantile loss function'
forward(batch)

Forlward method used during the training loop

Parameters:

batch (dict) – the batch structure. The keys are: y : the target variable(s). This is always present x_num_past: the numerical past variables. This is always present x_num_future: the numerical future variables x_cat_past: the categorical past variables x_cat_future: the categorical future variables idx_target: index of target features in the past array

Returns:

output of the mode;

Return type:

torch.tensor

handle_categorical_variables = True
handle_future_covariates = False
handle_multivariate = True
handle_quantile_loss = True
prepare_data_per_node: bool
training: bool

dsipts.models.Persistent module

class dsipts.models.Persistent.Persistent(**kwargs)

Bases: Base

Simple persistent model aligned with all the other

allow_zero_length_dataloader_with_multiple_devices: bool
description = 'Can   handle multivariate output \nCan NOT  handle future covariates\nCan NOT  handle categorical covariates\nCan NOT  handle Quantile loss function'
forward(batch)

Forlward method used during the training loop

Parameters:

batch (dict) – the batch structure. The keys are: y : the target variable(s). This is always present x_num_past: the numerical past variables. This is always present x_num_future: the numerical future variables x_cat_past: the categorical past variables x_cat_future: the categorical future variables idx_target: index of target features in the past array

Returns:

output of the mode;

Return type:

torch.tensor

handle_categorical_variables = False
handle_future_covariates = False
handle_multivariate = True
handle_quantile_loss = False
prepare_data_per_node: bool
training: bool

dsipts.models.RNN module

class dsipts.models.RNN.MyBN(channels)

Bases: Module

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(x)

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

class dsipts.models.RNN.RNN(hidden_RNN: int, num_layers_RNN: int, kind: str, kernel_size: int, activation: str = 'torch.nn.ReLU', remove_last=False, dropout_rate: float = 0.1, use_bn: bool = False, num_blocks: int = 4, bidirectional: bool = True, lstm_type: str = 'slstm', **kwargs)

Bases: Base

Initialize a recurrent model with an encoder-decoder structure.

Parameters:
  • hidden_RNN (int) – Hidden size of the RNN block.

  • num_layers_RNN (int) – Number of RNN layers.

  • kind (str) – Type of RNN to use, either ‘gru’ or ‘lstm’ or xlstm.

  • kernel_size (int) – Kernel size in the encoder convolutional block.

  • activation (str, optional) – Activation function from PyTorch. Default is ‘torch.nn.ReLU’.

  • remove_last (bool, optional) – If True, the model learns the difference with respect to the last seen point. Default is False.

  • dropout_rate (float, optional) – Dropout rate in Dropout layers. Default is 0.1.

  • use_bn (bool, optional) – If True, Batch Normalization layers will be added and Dropouts will be removed. Default is False.

  • num_blocks (int, optional) – Number of xLSTM blocks (only for xLSTM). Default is 4.

  • bidirectional (bool, optional) – If True, the RNN is bidirectional. Default is True.

  • lstm_type (str, optional) – Type of LSTM to use (only for xLSTM), either ‘slstm’ or ‘mlstm’. Default is ‘slstm’.

  • **kwargs – Additional keyword arguments.

Raises:

ValueError – If the specified kind is not ‘lstm’, ‘gru’, or ‘xlstm’.

allow_zero_length_dataloader_with_multiple_devices: bool
forward(batch)

Forlward method used during the training loop

Parameters:

batch (dict) – the batch structure. The keys are: y : the target variable(s). This is always present x_num_past: the numerical past variables. This is always present x_num_future: the numerical future variables x_cat_past: the categorical past variables x_cat_future: the categorical future variables idx_target: index of target features in the past array

Returns:

output of the mode;

Return type:

torch.tensor

handle_categorical_variables = True
handle_future_covariates = True
handle_multivariate = True
handle_quantile_loss = True
prepare_data_per_node: bool
training: bool

dsipts.models.Samformer module

class dsipts.models.Samformer.Samformer(hidden_size: int, use_revin: bool, activation: str = '', **kwargs)

Bases: Base

Initialize the model with specified parameters. Samformer: Unlocking the Potential of Transformers in Time Series Forecasting with Sharpness-Aware Minimization and Channel-Wise Attention. https://arxiv.org/pdf/2402.10198

Parameters:
  • hidden_size (int) – The size of the hidden layer.

  • use_revin (bool) – Flag indicating whether to use RevIN.

  • activation (str, optional) – The activation function to use. Defaults to ‘’.

  • **kwargs – Additional keyword arguments passed to the parent class.

Raises:

ValueError – If the activation function is not recognized.

allow_zero_length_dataloader_with_multiple_devices: bool
description = 'Can   handle multivariate output \nCan NOT  handle future covariates\nCan NOT  handle categorical covariates\nCan NOT  handle Quantile loss function'
forward(batch: dict) float

Forlward method used during the training loop

Parameters:

batch (dict) – the batch structure. The keys are: y : the target variable(s). This is always present x_num_past: the numerical past variables. This is always present x_num_future: the numerical future variables x_cat_past: the categorical past variables x_cat_future: the categorical future variables idx_target: index of target features in the past array

Returns:

output of the mode;

Return type:

torch.tensor

handle_categorical_variables = False
handle_future_covariates = False
handle_multivariate = True
handle_quantile_loss = False
prepare_data_per_node: bool
training: bool

dsipts.models.Simple module

class dsipts.models.Simple.Simple(hidden_size: int, dropout_rate: float = 0.1, activation: str = 'torch.nn.ReLU', **kwargs)

Bases: Base

This is the basic model, each model implemented must overwrite the init method and the forward method. The inference step is optional, by default it uses the forward method but for recurrent network you should implement your own method

Parameters:
  • verbose (bool) – Flag to enable verbose logging.

  • past_steps (int) – Number of past time steps to consider.

  • future_steps (int) – Number of future time steps to predict.

  • past_channels (int) – Number of channels in the past input data.

  • future_channels (int) – Number of channels in the future input data.

  • out_channels (int) – Number of output channels.

  • embs_past (List[int]) – List of embedding dimensions for past data.

  • embs_fut (List[int]) – List of embedding dimensions for future data.

  • n_classes (int, optional) – Number of classes for classification. Defaults to 0.

  • persistence_weight (float, optional) – Weight for persistence in loss calculation. Defaults to 0.0.

  • loss_type (str, optional) – Type of loss function to use (‘l1’ or ‘mse’). Defaults to ‘l1’.

  • quantiles (List[int], optional) – List of quantiles for quantile loss. Defaults to an empty list.

  • reduction_mode (str, optional) – Mode for reduction for categorical embedding layer (‘mean’, ‘sum’, ‘none’). Defaults to ‘mean’.

  • use_classical_positional_encoder (bool, optional) – Flag to use classical positional encoding or using embedding layer also for the positions. Defaults to False.

  • emb_dim (int, optional) – Dimension of categorical embeddings. Defaults to 16.

  • optim (Union[str, None], optional) – Optimizer type. Defaults to None.

  • optim_config (dict, optional) – Configuration for the optimizer. Defaults to None.

  • scheduler_config (dict, optional) – Configuration for the learning rate scheduler. Defaults to None.

Raises:
  • AssertionError – If the number of quantiles is not equal to 3 when quantiles are provided.

  • AssertionError – If the number of output channels is not 1 for classification tasks.

allow_zero_length_dataloader_with_multiple_devices: bool
description = 'Can   handle multivariate output \nCan   handle future covariates\nCan   handle categorical covariates\nCan   handle Quantile loss function\n THE SIMPLE IMPLEMENTATION DOES NOT USE CATEGORICAL NOR FUTURE VARIABLES'
forward(batch)

Forlward method used during the training loop

Parameters:

batch (dict) – the batch structure. The keys are: y : the target variable(s). This is always present x_num_past: the numerical past variables. This is always present x_num_future: the numerical future variables x_cat_past: the categorical past variables x_cat_future: the categorical future variables idx_target: index of target features in the past array

Returns:

output of the mode;

Return type:

torch.tensor

handle_categorical_variables = True
handle_future_covariates = True
handle_multivariate = True
handle_quantile_loss = True
prepare_data_per_node: bool
training: bool

dsipts.models.TFT module

class dsipts.models.TFT.TFT(d_model: int, num_layers_RNN: int, d_head: int, n_head: int, dropout_rate: float, **kwargs)

Bases: Base

Initializes the model for time series forecasting with attention mechanisms and recurrent neural networks.

This model is designed for direct forecasting, allowing for multi-output and multi-horizon predictions. It leverages attention mechanisms to enhance the selection of relevant past time steps and learn long-term dependencies. The architecture includes RNN enrichment, gating mechanisms to minimize the impact of irrelevant variables, and the ability to output prediction intervals through quantile regression.

Key features include: - Direct Model: Predicts all future steps at once. - Multi-Output Forecasting: Capable of predicting one or more variables simultaneously. - Multi-Horizon Forecasting: Predicts variables at multiple future time steps. - Attention-Based Mechanism: Enhances the selection of relevant past time steps and learns long-term dependencies. - RNN Enrichment: Utilizes LSTM for initial autoregressive approximation, which is refined by the rest of the network. - Gating Mechanisms: Reduces the contribution of irrelevant variables. - Prediction Intervals: Outputs percentiles (e.g., 10th, 50th, 90th) at each time step.

The model also facilitates interpretability by identifying: - Global importance of variables for both past and future. - Temporal patterns. - Significant events.

Parameters:
  • d_model (int) – General hidden dimension across the network, adjustable in sub-networks.

  • num_layers_RNN (int) – Number of layers in the recurrent neural network (LSTM).

  • d_head (int) – Dimension of each attention head.

  • n_head (int) – Number of attention heads.

  • dropout_rate (float) – Dropout rate applied uniformly across all dropout layers.

  • **kwargs – Additional keyword arguments for further customization.

allow_zero_length_dataloader_with_multiple_devices: bool
description = 'Can   handle multivariate output \nCan   handle future covariates\nCan   handle categorical covariates\nCan   handle Quantile loss function'
forward(batch: dict) Tensor

Temporal Fusion Transformer

Collectiong Data - Extract the autoregressive variable(s) - Embedding and compute a first approximated prediction - ‘summary_past’ and ‘summary_fut’ collecting data about past and future Concatenating on the dimension 2 all different datas, which will be mixed through a MEAN over that imension Info get from other tensor of the batch taken as input

TFT actual computations - Residual Connection for y_past and summary_past - Residual Connection for y_fut and summary_fut - GRN1 for past and for fut - ATTENTION(summary_fut, summary_past, y_past) - Residual Connection for attention itself - GRN2 for attention - Residual Connection for attention and summary_fut - Linear for actual values and reshape

Parameters:

batch (dict) – Keys used are [‘x_num_past’, ‘idx_target’, ‘x_num_future’, ‘x_cat_past’, ‘x_cat_future’]

Returns:

shape [B, self.future_steps, self.out_channels, self.mul] or [B, self.future_steps, self.out_channels] according to quantiles

Return type:

torch.Tensor

handle_categorical_variables = True
handle_future_covariates = True
handle_multivariate = True
handle_quantile_loss = True
prepare_data_per_node: bool
remove_var(tensor: Tensor, indexes_to_exclude: int, dimension: int) Tensor

Function to remove variables from tensors in chosen dimension and position

Parameters:
  • tensor (torch.Tensor) – starting tensor

  • indexes_to_exclude (int) – index of the chosen dimension we want t oexclude

  • dimension (int) – dimension of the tensor on which we want to work

Returns:

new tensor without the chosen variables

Return type:

torch.Tensor

training: bool

dsipts.models.TIDE module

class dsipts.models.TIDE.ResidualBlock(in_size: int, out_size: int, dropout_rate: float, activation_fun: str = '')

Bases: Module

Residual Block as basic layer of the archetecture.

MLP with one hidden layer, activation and skip connection Basically dimension d_model, but better if input_dim and output_dim are explicit

in_size and out_size to handle dimensions at different stages of the NN

Parameters:
  • in_size (int)

  • out_size (int)

  • dropout_rate (float)

  • activation_fun (str, optional) – activation function to use in the Residual Block. Defaults to nn.ReLU.

forward(x, apply_final_norm=True)

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

class dsipts.models.TIDE.TIDE(hidden_size: int, d_model: int, n_add_enc: int, n_add_dec: int, dropout_rate: float, activation: str = '', **kwargs)

Bases: Base

Initializes the model with specified parameters for a neural network architecture. Long-term Forecasting with TiDE: Time-series Dense Encoder https://arxiv.org/abs/2304.08424

Parameters:
  • hidden_size (int) – The size of the hidden layers.

  • d_model (int) – The dimensionality of the model.

  • n_add_enc (int) – The number of additional encoder layers.

  • n_add_dec (int) – The number of additional decoder layers.

  • dropout_rate (float) – The dropout rate to be applied in the layers.

  • activation (str, optional) – The activation function to be used. Defaults to an empty string.

  • **kwargs – Additional keyword arguments passed to the parent class.

allow_zero_length_dataloader_with_multiple_devices: bool
description = 'Can   handle multivariate output \nCan   handle future covariates\nCan   handle categorical covariates\nCan   handle Quantile loss function'
forward(batch: dict) float

training process of the diffusion network

Parameters:

batch (dict) – variables loaded

Returns:

total loss about the prediction of the noises over all subnets extracted

Return type:

float

handle_categorical_variables = True
handle_future_covariates = True
handle_multivariate = True
handle_quantile_loss = True
prepare_data_per_node: bool
remove_var(tensor: Tensor, indexes_to_exclude: list, dimension: int) Tensor

Function to remove variables from tensors in chosen dimension and position

Parameters:
  • tensor (torch.Tensor) – starting tensor

  • indexes_to_exclude (list) – index of the chosen dimension we want t oexclude

  • dimension (int) – dimension of the tensor on which we want to work (not list od dims!!)

Returns:

new tensor without the chosen variables

Return type:

torch.Tensor

training: bool

dsipts.models.TTM module

class dsipts.models.TTM.TTM(model_path: str, past_steps: int, future_steps: int, freq_prefix_tuning: bool, freq: str, prefer_l1_loss: bool, prefer_longer_context: bool, loss_type: str, num_input_channels, prediction_channel_indices, exogenous_channel_indices, decoder_mode, fcm_context_length, fcm_use_mixer, fcm_mix_layers, fcm_prepend_past, enable_forecast_channel_mixing, out_channels: int, embs: List[int], remove_last=False, optim: str | None = None, optim_config: dict = None, scheduler_config: dict = None, verbose=False, use_quantiles=False, persistence_weight: float = 0.0, quantiles: List[int] = [], **kwargs)

Bases: Base

TODO and FIX for future and past categorical variables

Parameters:
  • model_path (str) – _description_

  • past_steps (int) – _description_

  • future_steps (int) – _description_

  • freq_prefix_tuning (bool) – _description_

  • freq (str) – _description_

  • prefer_l1_loss (bool) – _description_

  • loss_type (str) – _description_

  • num_input_channels (_type_) – _description_

  • prediction_channel_indices (_type_) – _description_

  • exogenous_channel_indices (_type_) – _description_

  • decoder_mode (_type_) – _description_

  • fcm_context_length (_type_) – _description_

  • fcm_use_mixer (_type_) – _description_

  • fcm_mix_layers (_type_) – _description_

  • fcm_prepend_past (_type_) – _description_

  • enable_forecast_channel_mixing (_type_) – _description_

  • out_channels (int) – _description_

  • embs (List[int]) – _description_

  • remove_last (bool, optional) – _description_. Defaults to False.

  • optim (Union[str,None], optional) – _description_. Defaults to None.

  • optim_config (dict, optional) – _description_. Defaults to None.

  • scheduler_config (dict, optional) – _description_. Defaults to None.

  • verbose (bool, optional) – _description_. Defaults to False.

  • use_quantiles (bool, optional) – _description_. Defaults to False.

  • persistence_weight (float, optional) – _description_. Defaults to 0.0.

  • quantiles (List[int], optional) – _description_. Defaults to [].

forward(batch)

Forlward method used during the training loop

Parameters:

batch (dict) – the batch structure. The keys are: y : the target variable(s). This is always present x_num_past: the numerical past variables. This is always present x_num_future: the numerical future variables x_cat_past: the categorical past variables x_cat_future: the categorical future variables idx_target: index of target features in the past array

Returns:

output of the mode;

Return type:

torch.tensor

dsipts.models.TimeXER module

class dsipts.models.TimeXER.TimeXER(patch_len: int, d_model: int, n_head: int, d_ff: int = 512, dropout_rate: float = 0.1, n_layer_decoder: int = 1, activation: str = '', **kwargs)

Bases: Base

Initialize the model with specified parameters. https://github.com/thuml/Time-Series-Library/blob/main/models/TimeMixer.py

Parameters:
  • patch_len (int) – Length of the patches.

  • d_model (int) – Dimension of the model.

  • n_head (int) – Number of attention heads.

  • d_ff (int, optional) – Dimension of the feedforward network. Defaults to 512.

  • dropout_rate (float, optional) – Dropout rate for regularization. Defaults to 0.1.

  • n_layer_decoder (int, optional) – Number of layers in the decoder. Defaults to 1.

  • activation (str, optional) – Activation function to use. Defaults to ‘’.

  • **kwargs – Additional keyword arguments passed to the superclass.

Raises:

ValueError – If an invalid activation function is provided.

allow_zero_length_dataloader_with_multiple_devices: bool
description = 'Can   handle multivariate output \nCan   handle future covariates\nCan   handle categorical covariates\nCan   handle Quantile loss function'
forward(batch: dict) float

Forlward method used during the training loop

Parameters:

batch (dict) – the batch structure. The keys are: y : the target variable(s). This is always present x_num_past: the numerical past variables. This is always present x_num_future: the numerical future variables x_cat_past: the categorical past variables x_cat_future: the categorical future variables idx_target: index of target features in the past array

Returns:

output of the mode;

Return type:

torch.tensor

handle_categorical_variables = True
handle_future_covariates = True
handle_multivariate = True
handle_quantile_loss = True
prepare_data_per_node: bool
training: bool

dsipts.models.VQVAEA module

class dsipts.models.VQVAEA.VQVAEA(past_steps: int, future_steps: int, past_channels: int, future_channels: int, hidden_channels: int, embs: List[int], d_model: int, max_voc_size: int, num_layers: int, dropout_rate: float, commitment_cost: float, decay: float, n_heads: int, out_channels: int, epoch_vqvae: int, persistence_weight: float = 0.0, loss_type: str = 'l1', quantiles: List[int] = [], optim: str | None = None, optim_config: dict = None, scheduler_config: dict = None, **kwargs)

Bases: Base

Custom encoder-decoder

Parameters:
  • past_steps (int) – number of past datapoints used

  • future_steps (int) – number of future lag to predict

  • past_channels (int) – number of numeric past variables, must be >0

  • future_channels (int) – number of future numeric variables

  • embs (List) – list of the initial dimension of the categorical variables

  • cat_emb_dim (int) – final dimension of each categorical variable

  • hidden_RNN (int) – hidden size of the RNN block

  • num_layers_RNN (int) – number of RNN layers

  • kind (str) – one among GRU or LSTM

  • kernel_size (int) – kernel size in the encoder convolutional block

  • sum_emb (bool) – if true the contribution of each embedding will be summed-up otherwise stacked

  • out_channels (int) – number of output channels

  • activation (str, optional) – activation fuction function pytorch. Default torch.nn.ReLU

  • remove_last (bool, optional) – if True the model learns the difference respect to the last seen point

  • persistence_weight (float) – weight controlling the divergence from persistence model. Default 0

  • loss_type (str, optional) – this model uses custom losses or l1 or mse. Custom losses can be linear_penalization or exponential_penalization. Default l1,

  • quantiles (List[int], optional) – we can use quantile loss il len(quantiles) = 0 (usually 0.1,0.5, 0.9) or L1loss in case len(quantiles)==0. Defaults to [].

  • dropout_rate (float, optional) – dropout rate in Dropout layers

  • use_bn (bool, optional) – if true BN layers will be added and dropouts will be removed

  • use_glu (bool,optional) – use GLU for feature selection. Defaults to True.

  • glu_percentage (float, optiona) – percentage of features to use. Defaults to 1.0.

  • n_classes (int) – number of classes (0 in regression)

  • optim (str, optional) – if not None it expects a pytorch optim method. Defaults to None that is mapped to Adam.

  • optim_config (dict, optional) – configuration for Adam optimizer. Defaults to None.

  • scheduler_config (dict, optional) – configuration for stepLR scheduler. Defaults to None.

allow_zero_length_dataloader_with_multiple_devices: bool
description = 'Can NOT  handle multivariate output \nCan NOT  handle future covariates\nCan NOT  handle categorical covariates\nCan NOT  handle Quantile loss function'
forward(batch)

Forlward method used during the training loop

Parameters:

batch (dict) – the batch structure. The keys are: y : the target variable(s). This is always present x_num_past: the numerical past variables. This is always present x_num_future: the numerical future variables x_cat_past: the categorical past variables x_cat_future: the categorical future variables idx_target: index of target features in the past array

Returns:

output of the mode;

Return type:

torch.tensor

generate(idx, max_new_tokens, temperature=1.0, do_sample=False, top_k=None, num_samples=100)

Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete the sequence max_new_tokens times, feeding the predictions back into the model each time. Most likely you’ll want to make sure to be in model.eval() mode of operation for this.

gpt(tokens)
handle_categorical_variables = False
handle_future_covariates = False
handle_multivariate = False
handle_quantile_loss = False
inference(batch: dict) tensor

Usually it is ok to return the output of the forward method but sometimes not (e.g. RNN)

Parameters:

batch (dict) – batch

Returns:

result

Return type:

torch.tensor

prepare_data_per_node: bool
training: bool
dsipts.models.VQVAEA.random() x in the interval [0, 1).

dsipts.models.VVA module

class dsipts.models.VVA.VVA(past_steps: int, future_steps: int, past_channels: int, future_channels: int, embs: List[int], d_model: int, max_voc_size: int, token_split: int, num_layers: int, dropout_rate: float, n_heads: int, out_channels: int, persistence_weight: float = 0.0, loss_type: str = 'l1', quantiles: List[int] = [], optim: str | None = None, optim_config: dict = None, scheduler_config: dict = None, **kwargs)

Bases: Base

Custom encoder-decoder

Parameters:
  • past_steps (int) – number of past datapoints used

  • future_steps (int) – number of future lag to predict

  • past_channels (int) – number of numeric past variables, must be >0

  • future_channels (int) – number of future numeric variables

  • embs (List) – list of the initial dimension of the categorical variables

  • cat_emb_dim (int) – final dimension of each categorical variable

  • hidden_RNN (int) – hidden size of the RNN block

  • num_layers_RNN (int) – number of RNN layers

  • kind (str) – one among GRU or LSTM

  • kernel_size (int) – kernel size in the encoder convolutional block

  • sum_emb (bool) – if true the contribution of each embedding will be summed-up otherwise stacked

  • out_channels (int) – number of output channels

  • activation (str, optional) – activation fuction function pytorch. Default torch.nn.ReLU

  • remove_last (bool, optional) – if True the model learns the difference respect to the last seen point

  • persistence_weight (float) – weight controlling the divergence from persistence model. Default 0

  • loss_type (str, optional) – this model uses custom losses or l1 or mse. Custom losses can be linear_penalization or exponential_penalization. Default l1,

  • quantiles (List[int], optional) – we can use quantile loss il len(quantiles) = 0 (usually 0.1,0.5, 0.9) or L1loss in case len(quantiles)==0. Defaults to [].

  • dropout_rate (float, optional) – dropout rate in Dropout layers

  • use_bn (bool, optional) – if true BN layers will be added and dropouts will be removed

  • use_glu (bool,optional) – use GLU for feature selection. Defaults to True.

  • glu_percentage (float, optiona) – percentage of features to use. Defaults to 1.0.

  • n_classes (int) – number of classes (0 in regression)

  • optim (str, optional) – if not None it expects a pytorch optim method. Defaults to None that is mapped to Adam.

  • optim_config (dict, optional) – configuration for Adam optimizer. Defaults to None.

  • scheduler_config (dict, optional) – configuration for stepLR scheduler. Defaults to None.

allow_zero_length_dataloader_with_multiple_devices: bool
configure_optimizers()

This long function is unfortunately doing something very simple and is being very defensive: We are separating out all parameters of the model into two buckets: those that will experience weight decay for regularization and those that won’t (biases, and layernorm/embedding weights). We are then returning the PyTorch optimizer object.

description = 'Can NOT  handle multivariate output \nCan NOT  handle future covariates\nCan NOT  handle categorical covariates\nCan NOT  handle Quantile loss function'
forward(batch)

Forlward method used during the training loop

Parameters:

batch (dict) – the batch structure. The keys are: y : the target variable(s). This is always present x_num_past: the numerical past variables. This is always present x_num_future: the numerical future variables x_cat_past: the categorical past variables x_cat_future: the categorical future variables idx_target: index of target features in the past array

Returns:

output of the mode;

Return type:

torch.tensor

generate(idx, max_new_tokens, temperature=1.0, do_sample=False, top_k=None, num_samples=100)

Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete the sequence max_new_tokens times, feeding the predictions back into the model each time. Most likely you’ll want to make sure to be in model.eval() mode of operation for this.

handle_categorical_variables = False
handle_future_covariates = False
handle_multivariate = False
handle_quantile_loss = False
inference(batch: dict) tensor

Usually it is ok to return the output of the forward method but sometimes not (e.g. RNN)

Parameters:

batch (dict) – batch

Returns:

result

Return type:

torch.tensor

prepare_data_per_node: bool
training: bool

dsipts.models.base module

class dsipts.models.base.Base(verbose: bool, past_steps: int, future_steps: int, past_channels: int, future_channels: int, out_channels: int, embs_past: List[int], embs_fut: List[int], n_classes: int = 0, persistence_weight: float = 0.0, loss_type: str = 'l1', quantiles: List[int] = [], reduction_mode: str = 'mean', use_classical_positional_encoder: bool = False, emb_dim: int = 16, optim: str | None = None, optim_config: dict = None, scheduler_config: dict = None)

Bases: LightningModule

This is the basic model, each model implemented must overwrite the init method and the forward method. The inference step is optional, by default it uses the forward method but for recurrent network you should implement your own method

Parameters:
  • verbose (bool) – Flag to enable verbose logging.

  • past_steps (int) – Number of past time steps to consider.

  • future_steps (int) – Number of future time steps to predict.

  • past_channels (int) – Number of channels in the past input data.

  • future_channels (int) – Number of channels in the future input data.

  • out_channels (int) – Number of output channels.

  • embs_past (List[int]) – List of embedding dimensions for past data.

  • embs_fut (List[int]) – List of embedding dimensions for future data.

  • n_classes (int, optional) – Number of classes for classification. Defaults to 0.

  • persistence_weight (float, optional) – Weight for persistence in loss calculation. Defaults to 0.0.

  • loss_type (str, optional) – Type of loss function to use (‘l1’ or ‘mse’). Defaults to ‘l1’.

  • quantiles (List[int], optional) – List of quantiles for quantile loss. Defaults to an empty list.

  • reduction_mode (str, optional) – Mode for reduction for categorical embedding layer (‘mean’, ‘sum’, ‘none’). Defaults to ‘mean’.

  • use_classical_positional_encoder (bool, optional) – Flag to use classical positional encoding or using embedding layer also for the positions. Defaults to False.

  • emb_dim (int, optional) – Dimension of categorical embeddings. Defaults to 16.

  • optim (Union[str, None], optional) – Optimizer type. Defaults to None.

  • optim_config (dict, optional) – Configuration for the optimizer. Defaults to None.

  • scheduler_config (dict, optional) – Configuration for the learning rate scheduler. Defaults to None.

Raises:
  • AssertionError – If the number of quantiles is not equal to 3 when quantiles are provided.

  • AssertionError – If the number of output channels is not 1 for classification tasks.

description = 'Can NOT  handle multivariate output \nCan NOT  handle future covariates\nCan NOT  handle categorical covariates\nCan NOT  handle Quantile loss function'
abstractmethod forward(batch: dict) tensor

Forlward method used during the training loop

Parameters:

batch (dict) – the batch structure. The keys are: y : the target variable(s). This is always present x_num_past: the numerical past variables. This is always present x_num_future: the numerical future variables x_cat_past: the categorical past variables x_cat_future: the categorical future variables idx_target: index of target features in the past array

Returns:

output of the mode;

Return type:

torch.tensor

handle_categorical_variables = False
handle_future_covariates = False
handle_multivariate = False
handle_quantile_loss = False
inference(batch: dict) tensor

Usually it is ok to return the output of the forward method but sometimes not (e.g. RNN)

Parameters:

batch (dict) – batch

Returns:

result

Return type:

torch.tensor

dsipts.models.base.dilate_loss(outputs, targets, alpha, gamma, device)
dsipts.models.base.standardize_momentum(x, order)

dsipts.models.base_v2 module

class dsipts.models.base_v2.Base(verbose: bool, past_steps: int, future_steps: int, past_channels: int, future_channels: int, out_channels: int, embs_past: List[int], embs_fut: List[int], n_classes: int = 0, persistence_weight: float = 0.0, loss_type: str = 'l1', quantiles: List[int] = [], reduction_mode: str = 'mean', use_classical_positional_encoder: bool = False, emb_dim: int = 16, optim: str | None = None, optim_config: dict = None, scheduler_config: dict = None)

Bases: LightningModule

This is the basic model, each model implemented must overwrite the init method and the forward method. The inference step is optional, by default it uses the forward method but for recurrent network you should implement your own method

Parameters:
  • verbose (bool) – Flag to enable verbose logging.

  • past_steps (int) – Number of past time steps to consider.

  • future_steps (int) – Number of future time steps to predict.

  • past_channels (int) – Number of channels in the past input data.

  • future_channels (int) – Number of channels in the future input data.

  • out_channels (int) – Number of output channels.

  • embs_past (List[int]) – List of embedding dimensions for past data.

  • embs_fut (List[int]) – List of embedding dimensions for future data.

  • n_classes (int, optional) – Number of classes for classification. Defaults to 0.

  • persistence_weight (float, optional) – Weight for persistence in loss calculation. Defaults to 0.0.

  • loss_type (str, optional) – Type of loss function to use (‘l1’ or ‘mse’). Defaults to ‘l1’.

  • quantiles (List[int], optional) – List of quantiles for quantile loss. Defaults to an empty list.

  • reduction_mode (str, optional) – Mode for reduction for categorical embedding layer (‘mean’, ‘sum’, ‘none’). Defaults to ‘mean’.

  • use_classical_positional_encoder (bool, optional) – Flag to use classical positional encoding or using embedding layer also for the positions. Defaults to False.

  • emb_dim (int, optional) – Dimension of categorical embeddings. Defaults to 16.

  • optim (Union[str, None], optional) – Optimizer type. Defaults to None.

  • optim_config (dict, optional) – Configuration for the optimizer. Defaults to None.

  • scheduler_config (dict, optional) – Configuration for the learning rate scheduler. Defaults to None.

Raises:
  • AssertionError – If the number of quantiles is not equal to 3 when quantiles are provided.

  • AssertionError – If the number of output channels is not 1 for classification tasks.

allow_zero_length_dataloader_with_multiple_devices: bool
description = 'Can NOT  handle multivariate output \nCan NOT  handle future covariates\nCan NOT  handle categorical covariates\nCan NOT  handle Quantile loss function'
abstractmethod forward(batch: dict) tensor

Forlward method used during the training loop

Parameters:

batch (dict) – the batch structure. The keys are: y : the target variable(s). This is always present x_num_past: the numerical past variables. This is always present x_num_future: the numerical future variables x_cat_past: the categorical past variables x_cat_future: the categorical future variables idx_target: index of target features in the past array

Returns:

output of the mode;

Return type:

torch.tensor

handle_categorical_variables = False
handle_future_covariates = False
handle_multivariate = False
handle_quantile_loss = False
inference(batch: dict) tensor

Usually it is ok to return the output of the forward method but sometimes not (e.g. RNN)

Parameters:

batch (dict) – batch

Returns:

result

Return type:

torch.tensor

prepare_data_per_node: bool
training: bool
dsipts.models.base_v2.dilate_loss(outputs, targets, alpha, gamma, device)
dsipts.models.base_v2.standardize_momentum(x, order)

dsipts.models.utils module

class dsipts.models.utils.CPRS(alpha=0.5, reduction='mean')

Bases: Module

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(y_hat, target, weights=None)

Compute the almost fair CRPS loss (efficient version).

Parameters:
  • ensemble – Tensor of shape (batch_size, n_members, …)

  • target – Tensor of shape (batch_size, …)

  • weights – Optional per-variable or per-location weights

Returns:

Loss tensor

class dsipts.models.utils.Embedding_cat_variables(length: int, d_model: int, emb_dims: list, reduction_mode: str = 'mean', use_classical_positional_encoder: bool = False, device: str = 'cpu')

Bases: Module

Embeds categorical variables with optional positional encodings.

Parameters:
  • length (int) – Sequence length (e.g., total time steps).

  • d_model (int) – Output embedding dimension.

  • emb_dims (list) – Vocabulary sizes for each categorical feature.

  • reduction_mode (str) – ‘mean’, ‘sum’, or ‘none’.

  • use_classical_positional_encoder (bool) – Whether to use sinusoidal positional encoding.

  • device (str) – Device name (e.g., ‘cpu’ or ‘cuda’).

Notes

  • If reduction_mode is ‘none’, all embeddings are concatenated.

  • If use_classical_positional_encoder is True, uses fixed sin/cos encoding.

  • If False, treats position as a categorical variable and embeds it.

forward(BS: int, x: Tensor | None) Tensor

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

get_cat_n_embd(cat_vars)
class dsipts.models.utils.L1Loss

Bases: Module

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(preds, target)

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

class dsipts.models.utils.PathDTWBatch(*args, **kwargs)

Bases: Function

static backward(ctx, grad_output)

Define a formula for differentiating the operation with backward mode automatic differentiation.

This function is to be overridden by all subclasses. (Defining this function is equivalent to defining the vjp function.)

It must accept a context ctx as the first argument, followed by as many outputs as the forward() returned (None will be passed in for non tensor outputs of the forward function), and it should return as many tensors, as there were inputs to forward(). Each argument is the gradient w.r.t the given output, and each returned value should be the gradient w.r.t. the corresponding input. If an input is not a Tensor or is a Tensor not requiring grads, you can just pass None as a gradient for that input.

The context can be used to retrieve tensors saved during the forward pass. It also has an attribute ctx.needs_input_grad as a tuple of booleans representing whether each input needs gradient. E.g., backward() will have ctx.needs_input_grad[0] = True if the first input to forward() needs gradient computed w.r.t. the output.

static forward(ctx, D, gamma)

Define the forward of the custom autograd Function.

This function is to be overridden by all subclasses. There are two ways to define forward:

Usage 1 (Combined forward and ctx):

@staticmethod
def forward(ctx: Any, *args: Any, **kwargs: Any) -> Any:
    pass
  • It must accept a context ctx as the first argument, followed by any number of arguments (tensors or other types).

  • See combining-forward-context for more details

Usage 2 (Separate forward and ctx):

@staticmethod
def forward(*args: Any, **kwargs: Any) -> Any:
    pass

@staticmethod
def setup_context(ctx: Any, inputs: Tuple[Any, ...], output: Any) -> None:
    pass
  • The forward no longer accepts a ctx argument.

  • Instead, you must also override the torch.autograd.Function.setup_context() staticmethod to handle setting up the ctx object. output is the output of the forward, inputs are a Tuple of inputs to the forward.

  • See extending-autograd for more details

The context can be used to store arbitrary data that can be then retrieved during the backward pass. Tensors should not be stored directly on ctx (though this is not currently enforced for backward compatibility). Instead, tensors should be saved either with ctx.save_for_backward() if they are intended to be used in backward (equivalently, vjp) or ctx.save_for_forward() if they are intended to be used for in jvp.

class dsipts.models.utils.Permute

Bases: Module

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(input)

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

class dsipts.models.utils.QuantileLossMO(quantiles)

Bases: Module

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(preds, target)

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

class dsipts.models.utils.SinkhornDistance(eps, max_iter, reduction='none')

Bases: object

Given two empirical measures each with \(P_1\) locations \(x\in\mathbb{R}^{D_1}\) and \(P_2\) locations \(y\in\mathbb{R}^{D_2}\), outputs an approximation of the regularized OT cost for point clouds.

Parameters:
  • eps (float) – regularization coefficient

  • max_iter (int) – maximum number of Sinkhorn iterations

  • reduction (string, optional) – Specifies the reduction to apply to the output: ‘none’ | ‘mean’ | ‘sum’. ‘none’: no reduction will be applied, ‘mean’: the sum of the output will be divided by the number of elements in the output, ‘sum’: the output will be summed. Default: ‘none’

Shape:
  • Input: \((N, P_1, D_1)\), \((N, P_2, D_2)\)

  • Output: \((N)\) or \(()\), depending on reduction

M(C, u, v)

Modified cost for logarithmic updates

static ave(u, u1, tau)

Barycenter subroutine, used by kinetic acceleration through extrapolation.

compute(x, y)
class dsipts.models.utils.SoftDTWBatch(*args, **kwargs)

Bases: Function

static backward(ctx, grad_output)

Define a formula for differentiating the operation with backward mode automatic differentiation.

This function is to be overridden by all subclasses. (Defining this function is equivalent to defining the vjp function.)

It must accept a context ctx as the first argument, followed by as many outputs as the forward() returned (None will be passed in for non tensor outputs of the forward function), and it should return as many tensors, as there were inputs to forward(). Each argument is the gradient w.r.t the given output, and each returned value should be the gradient w.r.t. the corresponding input. If an input is not a Tensor or is a Tensor not requiring grads, you can just pass None as a gradient for that input.

The context can be used to retrieve tensors saved during the forward pass. It also has an attribute ctx.needs_input_grad as a tuple of booleans representing whether each input needs gradient. E.g., backward() will have ctx.needs_input_grad[0] = True if the first input to forward() needs gradient computed w.r.t. the output.

static forward(ctx, D, gamma=1.0)

Define the forward of the custom autograd Function.

This function is to be overridden by all subclasses. There are two ways to define forward:

Usage 1 (Combined forward and ctx):

@staticmethod
def forward(ctx: Any, *args: Any, **kwargs: Any) -> Any:
    pass
  • It must accept a context ctx as the first argument, followed by any number of arguments (tensors or other types).

  • See combining-forward-context for more details

Usage 2 (Separate forward and ctx):

@staticmethod
def forward(*args: Any, **kwargs: Any) -> Any:
    pass

@staticmethod
def setup_context(ctx: Any, inputs: Tuple[Any, ...], output: Any) -> None:
    pass
  • The forward no longer accepts a ctx argument.

  • Instead, you must also override the torch.autograd.Function.setup_context() staticmethod to handle setting up the ctx object. output is the output of the forward, inputs are a Tuple of inputs to the forward.

  • See extending-autograd for more details

The context can be used to store arbitrary data that can be then retrieved during the backward pass. Tensors should not be stored directly on ctx (though this is not currently enforced for backward compatibility). Instead, tensors should be saved either with ctx.save_for_backward() if they are intended to be used in backward (equivalently, vjp) or ctx.save_for_forward() if they are intended to be used for in jvp.

dsipts.models.utils.compute_softdtw(D, gamma)
dsipts.models.utils.compute_softdtw_backward(D_, R, gamma)
dsipts.models.utils.dtw_grad(theta, gamma)
dsipts.models.utils.dtw_hessian_prod(theta, Z, Q, E, gamma)
dsipts.models.utils.get_activation(activation)
dsipts.models.utils.get_scope(handle_multivariate, handle_future_covariates, handle_categorical_variables, handle_quantile_loss)
dsipts.models.utils.my_max(x, gamma)
dsipts.models.utils.my_max_hessian_product(p, z, gamma)
dsipts.models.utils.my_min(x, gamma)
dsipts.models.utils.my_min_hessian_product(p, z, gamma)
dsipts.models.utils.pairwise_distances(x, y=None)
Input: x is a Nxd matrix

y is an optional Mxd matirx

Output: dist is a NxM matrix where dist[i,j] is the square norm between x[i,:] and y[j,:]

if y is not given then use ‘y=x’.

i.e. dist[i,j] = ||x[i,:]-y[j,:]||^2

dsipts.models.utils.weight_init(m)
Usage:

model = Model() model.apply(weight_init)

dsipts.models.utils.weight_init_zeros(m)

Module contents