dsipts package¶
Subpackages¶
- dsipts.data_management package
- dsipts.data_structure package
- Submodules
- dsipts.data_structure.data_structure module
Categorical
TimeSeries
TimeSeries.create_data_loader()
TimeSeries.enrich()
TimeSeries.generate_signal()
TimeSeries.inference()
TimeSeries.inference_on_set()
TimeSeries.load()
TimeSeries.load_signal()
TimeSeries.plot()
TimeSeries.save()
TimeSeries.set_model()
TimeSeries.set_verbose()
TimeSeries.split_for_train()
TimeSeries.train_model()
- dsipts.data_structure.modifiers module
- dsipts.data_structure.utils module
- Module contents
- dsipts.models package
- Subpackages
- dsipts.models.autoformer package
- dsipts.models.crossformer package
- dsipts.models.d3vae package
- dsipts.models.duet package
- dsipts.models.informer package
- dsipts.models.itransformer package
- dsipts.models.patchtst package
- dsipts.models.samformer package
- dsipts.models.tft package
- dsipts.models.timexer package
- dsipts.models.ttm package
- dsipts.models.vva package
- dsipts.models.xlstm package
- Submodules
- dsipts.models.Autoformer module
- dsipts.models.CrossFormer module
CrossFormer
CrossFormer.allow_zero_length_dataloader_with_multiple_devices
CrossFormer.description
CrossFormer.forward()
CrossFormer.handle_categorical_variables
CrossFormer.handle_future_covariates
CrossFormer.handle_multivariate
CrossFormer.handle_quantile_loss
CrossFormer.prepare_data_per_node
CrossFormer.training
- dsipts.models.D3VAE module
- dsipts.models.Diffusion module
Diffusion
Diffusion.allow_zero_length_dataloader_with_multiple_devices
Diffusion.cat_categorical_vars()
Diffusion.description
Diffusion.forward()
Diffusion.gaussian_likelihood()
Diffusion.gaussian_log_likelihood()
Diffusion.handle_categorical_variables
Diffusion.handle_future_covariates
Diffusion.handle_multivariate
Diffusion.handle_quantile_loss
Diffusion.improving_weight_during_training()
Diffusion.inference()
Diffusion.normal_kl()
Diffusion.prepare_data_per_node
Diffusion.q_sample()
Diffusion.remove_var()
Diffusion.training
SubNet1
SubNet2
SubNet3
- dsipts.models.DilatedConv module
Block
DilatedConv
DilatedConv.allow_zero_length_dataloader_with_multiple_devices
DilatedConv.description
DilatedConv.forward()
DilatedConv.handle_categorical_variables
DilatedConv.handle_future_covariates
DilatedConv.handle_multivariate
DilatedConv.handle_quantile_loss
DilatedConv.inference()
DilatedConv.prepare_data_per_node
DilatedConv.training
GLU
- dsipts.models.DilatedConvED module
Block
DilatedConvED
DilatedConvED.allow_zero_length_dataloader_with_multiple_devices
DilatedConvED.description
DilatedConvED.forward()
DilatedConvED.handle_categorical_variables
DilatedConvED.handle_future_covariates
DilatedConvED.handle_multivariate
DilatedConvED.handle_quantile_loss
DilatedConvED.prepare_data_per_node
DilatedConvED.training
GLU
- dsipts.models.Duet module
- dsipts.models.ITransformer module
ITransformer
ITransformer.allow_zero_length_dataloader_with_multiple_devices
ITransformer.description
ITransformer.forecast()
ITransformer.forward()
ITransformer.handle_categorical_variables
ITransformer.handle_future_covariates
ITransformer.handle_multivariate
ITransformer.handle_quantile_loss
ITransformer.prepare_data_per_node
ITransformer.training
- dsipts.models.Informer module
- dsipts.models.LinearTS module
- dsipts.models.PatchTST module
- dsipts.models.Persistent module
- dsipts.models.RNN module
- dsipts.models.Samformer module
- dsipts.models.Simple module
- dsipts.models.TFT module
- dsipts.models.TIDE module
- dsipts.models.TTM module
- dsipts.models.TimeXER module
- dsipts.models.VQVAEA module
VQVAEA
VQVAEA.allow_zero_length_dataloader_with_multiple_devices
VQVAEA.description
VQVAEA.forward()
VQVAEA.generate()
VQVAEA.gpt()
VQVAEA.handle_categorical_variables
VQVAEA.handle_future_covariates
VQVAEA.handle_multivariate
VQVAEA.handle_quantile_loss
VQVAEA.inference()
VQVAEA.prepare_data_per_node
VQVAEA.training
random()
- dsipts.models.VVA module
- dsipts.models.base module
- dsipts.models.base_v2 module
- dsipts.models.utils module
CPRS
Embedding_cat_variables
L1Loss
PathDTWBatch
Permute
QuantileLossMO
SinkhornDistance
SoftDTWBatch
compute_softdtw()
compute_softdtw_backward()
dtw_grad()
dtw_hessian_prod()
get_activation()
get_scope()
my_max()
my_max_hessian_product()
my_min()
my_min_hessian_product()
pairwise_distances()
weight_init()
weight_init_zeros()
- Module contents
- Subpackages
Module contents¶
- class dsipts.Autoformer(label_len: int, d_model: int, dropout_rate: float, kernel_size: int, activation: str = 'torch.nn.ReLU', factor: float = 0.5, n_head: int = 1, n_layer_encoder: int = 2, n_layer_decoder: int = 2, hidden_size: int = 1048, **kwargs)¶
Bases:
Base
Autoformer from https://github.com/cure-lab/LTSF-Linear
- Parameters:
label_len (int) – see the original implementation, seems like a warmup dimension (the decoder part will produce also some past predictions that are filter out at the end)
d_model (int) – embedding dimension of the attention layer
dropout_rate (float) – dropout raye
kernel_size (int) – kernel size
activation (str, optional) – _description_. Defaults to ‘torch.nn.ReLU’.
factor (int, optional) – parameter of .autoformer.layers.AutoCorrelation for find the top k. Defaults to 0.5.
n_head (int, optional) – number of heads. Defaults to 1.
n_layer_encoder (int, optional) – number of encoder layers. Defaults to 2.
n_layer_decoder (int, optional) – number of decoder layers. Defaults to 2.
hidden_size (int, optional) – output dimension of the transformer layer. Defaults to 1048.
- description = 'Can handle multivariate output \nCan handle future covariates\nCan handle categorical covariates\nCan handle Quantile loss function'¶
- forward(batch)¶
Forlward method used during the training loop
- Parameters:
batch (dict) – the batch structure. The keys are: y : the target variable(s). This is always present x_num_past: the numerical past variables. This is always present x_num_future: the numerical future variables x_cat_past: the categorical past variables x_cat_future: the categorical future variables idx_target: index of target features in the past array
- Returns:
output of the mode;
- Return type:
torch.tensor
- handle_categorical_variables = True¶
- handle_future_covariates = True¶
- handle_multivariate = True¶
- handle_quantile_loss = True¶
- class dsipts.Base(verbose: bool, past_steps: int, future_steps: int, past_channels: int, future_channels: int, out_channels: int, embs_past: List[int], embs_fut: List[int], n_classes: int = 0, persistence_weight: float = 0.0, loss_type: str = 'l1', quantiles: List[int] = [], reduction_mode: str = 'mean', use_classical_positional_encoder: bool = False, emb_dim: int = 16, optim: str | None = None, optim_config: dict = None, scheduler_config: dict = None)¶
Bases:
LightningModule
This is the basic model, each model implemented must overwrite the init method and the forward method. The inference step is optional, by default it uses the forward method but for recurrent network you should implement your own method
- Parameters:
verbose (bool) – Flag to enable verbose logging.
past_steps (int) – Number of past time steps to consider.
future_steps (int) – Number of future time steps to predict.
past_channels (int) – Number of channels in the past input data.
future_channels (int) – Number of channels in the future input data.
out_channels (int) – Number of output channels.
embs_past (List[int]) – List of embedding dimensions for past data.
embs_fut (List[int]) – List of embedding dimensions for future data.
n_classes (int, optional) – Number of classes for classification. Defaults to 0.
persistence_weight (float, optional) – Weight for persistence in loss calculation. Defaults to 0.0.
loss_type (str, optional) – Type of loss function to use (‘l1’ or ‘mse’). Defaults to ‘l1’.
quantiles (List[int], optional) – List of quantiles for quantile loss. Defaults to an empty list.
reduction_mode (str, optional) – Mode for reduction for categorical embedding layer (‘mean’, ‘sum’, ‘none’). Defaults to ‘mean’.
use_classical_positional_encoder (bool, optional) – Flag to use classical positional encoding or using embedding layer also for the positions. Defaults to False.
emb_dim (int, optional) – Dimension of categorical embeddings. Defaults to 16.
optim (Union[str, None], optional) – Optimizer type. Defaults to None.
optim_config (dict, optional) – Configuration for the optimizer. Defaults to None.
scheduler_config (dict, optional) – Configuration for the learning rate scheduler. Defaults to None.
- Raises:
AssertionError – If the number of quantiles is not equal to 3 when quantiles are provided.
AssertionError – If the number of output channels is not 1 for classification tasks.
- description = 'Can NOT handle multivariate output \nCan NOT handle future covariates\nCan NOT handle categorical covariates\nCan NOT handle Quantile loss function'¶
- abstractmethod forward(batch: dict) tensor ¶
Forlward method used during the training loop
- Parameters:
batch (dict) – the batch structure. The keys are: y : the target variable(s). This is always present x_num_past: the numerical past variables. This is always present x_num_future: the numerical future variables x_cat_past: the categorical past variables x_cat_future: the categorical future variables idx_target: index of target features in the past array
- Returns:
output of the mode;
- Return type:
torch.tensor
- handle_categorical_variables = False¶
- handle_future_covariates = False¶
- handle_multivariate = False¶
- handle_quantile_loss = False¶
- inference(batch: dict) tensor ¶
Usually it is ok to return the output of the forward method but sometimes not (e.g. RNN)
- Parameters:
batch (dict) – batch
- Returns:
result
- Return type:
torch.tensor
- class dsipts.Categorical(name: str, frequency: int, duration: List[int], classes: int, action: ActionEnum, level: List[float])¶
Bases:
object
Class for generating toy categorical data
- Parameters:
name (str) – name of the categorical signal
frequency (int) – frequency of the signal
duration (List[int]) – duration of each class
classes (int) – number of classes
action (str) – one between additive or multiplicative
level (List[float]) – intensity of each class
- generate_signal(length: int) None ¶
Generate the resposne signal
- Parameters:
length (int) – length of the signal
- plot() None ¶
Plot the series
- class dsipts.CrossFormer(https://openreview.net/forum?id=vSVLM2j9eie)¶
Bases:
Base
- Parameters:
d_model (int) – The dimensionality of the model.
hidden_size (int) – The size of the hidden layers.
n_head (int) – The number of attention heads.
seg_len (int) – The length of the segments.
n_layer_encoder (int) – The number of layers in the encoder.
win_size (int) – The size of the window for attention.
factor (int, optional) – see .crossformer.attn.TwoStageAttentionLayer. Defaults to 10.
dropout_rate (float, optional) – The dropout rate. Defaults to 0.1.
activation (str, optional) – The activation function to use. Defaults to ‘torch.nn.ReLU’.
**kwargs – Additional keyword arguments for the parent class.
- Returns:
This method does not return a value.
- Return type:
None
- Raises:
ValueError – If the activation function is not recognized.
- description = 'Can handle multivariate output \nCan handle future covariates\nCan handle categorical covariates\nCan handle Quantile loss function'¶
- forward(batch)¶
Forlward method used during the training loop
- Parameters:
batch (dict) – the batch structure. The keys are: y : the target variable(s). This is always present x_num_past: the numerical past variables. This is always present x_num_future: the numerical future variables x_cat_past: the categorical past variables x_cat_future: the categorical future variables idx_target: index of target features in the past array
- Returns:
output of the mode;
- Return type:
torch.tensor
- handle_categorical_variables = True¶
- handle_future_covariates = True¶
- handle_multivariate = True¶
- handle_quantile_loss = True¶
- class dsipts.D3VAE(scale=0.1, hidden_size=64, num_layers=2, dropout_rate=0.1, diff_steps=200, loss_type='kl', beta_end=0.01, beta_schedule='linear', channel_mult=2, mult=1, num_preprocess_blocks=1, num_preprocess_cells=3, num_channels_enc=16, arch_instance='res_mbconv', num_latent_per_group=6, num_channels_dec=16, groups_per_scale=2, num_postprocess_blocks=1, num_postprocess_cells=2, beta_start=0, freq='h', **kwargs)¶
Bases:
Base
This is the basic model, each model implemented must overwrite the init method and the forward method. The inference step is optional, by default it uses the forward method but for recurrent network you should implement your own method
- Parameters:
verbose (bool) – Flag to enable verbose logging.
past_steps (int) – Number of past time steps to consider.
future_steps (int) – Number of future time steps to predict.
past_channels (int) – Number of channels in the past input data.
future_channels (int) – Number of channels in the future input data.
out_channels (int) – Number of output channels.
embs_past (List[int]) – List of embedding dimensions for past data.
embs_fut (List[int]) – List of embedding dimensions for future data.
n_classes (int, optional) – Number of classes for classification. Defaults to 0.
persistence_weight (float, optional) – Weight for persistence in loss calculation. Defaults to 0.0.
loss_type (str, optional) – Type of loss function to use (‘l1’ or ‘mse’). Defaults to ‘l1’.
quantiles (List[int], optional) – List of quantiles for quantile loss. Defaults to an empty list.
reduction_mode (str, optional) – Mode for reduction for categorical embedding layer (‘mean’, ‘sum’, ‘none’). Defaults to ‘mean’.
use_classical_positional_encoder (bool, optional) – Flag to use classical positional encoding or using embedding layer also for the positions. Defaults to False.
emb_dim (int, optional) – Dimension of categorical embeddings. Defaults to 16.
optim (Union[str, None], optional) – Optimizer type. Defaults to None.
optim_config (dict, optional) – Configuration for the optimizer. Defaults to None.
scheduler_config (dict, optional) – Configuration for the learning rate scheduler. Defaults to None.
- Raises:
AssertionError – If the number of quantiles is not equal to 3 when quantiles are provided.
AssertionError – If the number of output channels is not 1 for classification tasks.
- forward(batch: dict) tensor ¶
Forlward method used during the training loop
- Parameters:
batch (dict) – the batch structure. The keys are: y : the target variable(s). This is always present x_num_past: the numerical past variables. This is always present x_num_future: the numerical future variables x_cat_past: the categorical past variables x_cat_future: the categorical future variables idx_target: index of target features in the past array
- Returns:
output of the mode;
- Return type:
torch.tensor
- inference(batch: dict) tensor ¶
Care here, we need to implement it because for predicting the N-step it will use the prediction at step N-1. TODO fix if because I did not implement the know continuous variable presence here
- Parameters:
batch (dict) – batch of the dataloader
- Returns:
result
- Return type:
torch.tensor
- class dsipts.Diffusion(d_model: int, out_channels: int, past_steps: int, future_steps: int, past_channels: int, future_channels: int, embs: List[int], learn_var: bool, cosine_alpha: bool, diffusion_steps: int, beta: float, gamma: float, n_layers_RNN: int, d_head: int, n_head: int, dropout_rate: float, activation: str, subnet: int, perc_subnet_learning_for_step: float, persistence_weight: float = 0.0, loss_type: str = 'l1', quantiles: List[float] = [], optim: str | None = None, optim_config: dict | None = None, scheduler_config: dict | None = None, **kwargs)¶
Bases:
Base
Denoising Diffusion Probabilistic Model
- Parameters:
d_model (int)
out_channels (int) – number of target variables
past_steps (int) – size of past window
future_steps (int) – size of future window to be predicted
past_channels (int) – number of variables available for the past context
future_channels (int) – number of variables known in the future, available for forecasting
embs (list[int]) – categorical variables dimensions for embeddings
learn_var (bool) – Flag to make the model train the posterior variance (if True) or use the variance of posterior distribution
cosine_alpha (bool) – Flag for the generation of alphas and betas
diffusion_steps (int) – number of noising steps for the initial sample
beta (float) – starting variable to generate the diffusion perturbations. Ignored if cosine_alpha == True
gamma (float) – trade_off variable to balance loss over noise prediction and NegativeLikelihood/KL_Divergence.
n_layers_RNN (int) – param for subnet
d_head (int) – param for subnet
n_head (int) – param for subnet
dropout_rate (float) – param for subnet
activation (str) – param for subnet
subnet (int) – =1 for attention subnet, =2 for linear subnet. Others can be added(wait for Black Friday for discounts)
perc_subnet_learning_for_step (float) – percentage to choose how many subnet has to be trained for every batch. Decrease this value if the loss blows up.
persistence_weight (float, optional) – Defaults to 0.0.
loss_type (str, optional) – Defaults to ‘l1’.
quantiles (List[float], optional) – Only [] accepted. Defaults to [].
optim (Union[str,None], optional) – Defaults to None.
optim_config (Union[dict,None], optional) – Defaults to None.
scheduler_config (Union[dict,None], optional) – Defaults to None.
- cat_categorical_vars(batch: dict)¶
Extracting categorical context about past and future
- Parameters:
batch (dict) – Keys checked -> [‘x_cat_past’, ‘x_cat_future’]
- Returns:
cat_emb_past, cat_emb_fut
- Return type:
List[torch.Tensor, torch.Tensor]
- description = 'Can NOT handle multivariate output \nCan handle future covariates\nCan handle categorical covariates\nCan NOT handle Quantile loss function'¶
- forward(batch: dict) float ¶
training process of the diffusion network
- Parameters:
batch (dict) – variables loaded
- Returns:
total loss about the prediction of the noises over all subnets extracted
- Return type:
float
- gaussian_likelihood(x, mean, var)¶
- gaussian_log_likelihood(x, mean, var)¶
- handle_categorical_variables = True¶
- handle_future_covariates = True¶
- handle_multivariate = False¶
- handle_quantile_loss = False¶
- improving_weight_during_training()¶
Each time we sample from multinomial we subtract the minimum for more precise sampling, avoiding great learning differences among subnets
This lead to more stable inference also in early training, mainly for common context embedding.
For probabilistic reason, weights has to be >0, so we subtract min-1
- inference(batch: dict) Tensor ¶
Inference process to forecast future y
- Parameters:
batch (dict) – Keys checked [‘x_num_past, ‘idx_target’, ‘x_num_future’, ‘x_cat_past’, ‘x_cat_future’]
- Returns:
generated sequence [batch_size, future_steps, num_var]
- Return type:
torch.Tensor
- normal_kl(mean1, logvar1, mean2, logvar2)¶
Compute the KL divergence between two gaussians. Also called relative entropy. KL divergence of P from Q is the expected excess surprise from using Q as a model when the actual distribution is P. KL(P||Q) = P*log(P/Q) or -P*log(Q/P)
# In the context of machine learning, KL(P||Q) is often called the ‘information gain’ # achieved if P would be used instead of Q which is currently used.
Shapes are automatically broadcasted, so batches can be compared to scalars, among other use cases.
- q_sample(x_start: Tensor, t: int) List[Tensor] ¶
Diffuse x_start for t diffusion steps.
In other words, sample from q(x_t | x_0).
Also, compute the mean and variance of the diffusion posterior:
q(x_{t-1} | x_t, x_0)
Posterior mean and variance are the ones to be predicted
- Parameters:
x_start (torch.Tensor) – values to be predicted
t (int) – diffusion step
- Returns:
q_sample, posterior mean, posterior log variance and the actual noise
- Return type:
List[torch.Tensor, torch.Tensor, torch.Tensor]
- remove_var(tensor: Tensor, indexes_to_exclude: list, dimension: int) Tensor ¶
Function to remove variables from tensors in chosen dimension and position
- Parameters:
tensor (torch.Tensor) – starting tensor
indexes_to_exclude (list) – index of the chosen dimension we want t oexclude
dimension (int) – dimension of the tensor on which we want to work (not list od dims!!)
- Returns:
new tensor without the chosen variables
- Return type:
torch.Tensor
- class dsipts.DilatedConv(sum_layers: bool, hidden_RNN: int, num_layers_RNN: int, kind: str, kernel_size: int, activation: str = 'torch.nn.ReLU', remove_last=False, dropout_rate: float = 0.1, use_bn: bool = False, use_glu: bool = True, glu_percentage: float = 1.0, **kwargs)¶
Bases:
Base
Custom encoder-decoder
- Parameters:
sum_layers (bool) – Flag indicating whether to sum the layers.
hidden_RNN (int) – Number of hidden units in the RNN.
num_layers_RNN (int) – Number of layers in the RNN.
kind (str) – Type of RNN to use (e.g., ‘LSTM’, ‘GRU’).
kernel_size (int) – Size of the convolutional kernel.
activation (str, optional) – Activation function to use. Defaults to ‘torch.nn.ReLU’.
remove_last (bool, optional) – Flag to indicate whether to remove the last element in the sequence. Defaults to False.
dropout_rate (float, optional) – Dropout rate for regularization. Defaults to 0.1.
use_bn (bool, optional) – Flag to indicate whether to use batch normalization. Defaults to False.
use_glu (bool, optional) – Flag to indicate whether to use Gated Linear Units (GLU). Defaults to True.
glu_percentage (float, optional) – Percentage of GLU to apply. Defaults to 1.0.
**kwargs – Additional keyword arguments.
- Returns:
None
- description = 'Can handle multivariate output \nCan handle future covariates\nCan handle categorical covariates\nCan handle Quantile loss function'¶
- forward(batch)¶
It is mandatory to implement this method
- Parameters:
batch (dict) – batch of the dataloader
- Returns:
result
- Return type:
torch.tensor
- handle_categorical_variables = True¶
- handle_future_covariates = True¶
- handle_multivariate = True¶
- handle_quantile_loss = True¶
- inference(batch: dict) tensor ¶
Usually it is ok to return the output of the forward method but sometimes not (e.g. RNN)
- Parameters:
batch (dict) – batch
- Returns:
result
- Return type:
torch.tensor
- class dsipts.DilatedConvED(sum_layers: bool, hidden_RNN: int, num_layers_RNN: int, kind: str, kernel_size: int, dropout_rate: float = 0.1, use_bn: bool = False, use_cumsum: bool = True, use_bilinear: bool = False, activation: str = 'torch.nn.ReLU', **kwargs)¶
Bases:
Base
Initialize the model with specified parameters.
- Parameters:
sum_layers (bool) – Flag indicating whether to sum layers in the encoder/decoder blocks.
hidden_RNN (int) – Number of hidden units in the RNN.
num_layers_RNN (int) – Number of layers in the RNN.
kind (str) – Type of RNN to use (‘lstm’ or ‘gru’).
kernel_size (int) – Size of the convolutional kernel.
dropout_rate (float, optional) – Dropout rate for regularization. Defaults to 0.1.
use_bn (bool, optional) – Flag to use batch normalization. Defaults to False.
use_cumsum (bool, optional) – Flag to use cumulative sum. Defaults to True.
use_bilinear (bool, optional) – Flag to use bilinear layers. Defaults to False.
activation (str, optional) – Activation function to use. Defaults to ‘torch.nn.ReLU’.
**kwargs – Additional keyword arguments.
- Raises:
ValueError – If the specified activation function is not recognized or if the kind is not ‘lstm’ or ‘gru’.
- description = 'Can handle multivariate output \nCan handle future covariates\nCan handle categorical covariates\nCan handle Quantile loss function'¶
- forward(batch)¶
It is mandatory to implement this method
- Parameters:
batch (dict) – batch of the dataloader
- Returns:
result
- Return type:
torch.tensor
- handle_categorical_variables = True¶
- handle_future_covariates = True¶
- handle_multivariate = True¶
- handle_quantile_loss = True¶
- class dsipts.Duet(factor: int, d_model: int, n_head: int, n_layer: int, CI: bool, d_ff: int, noisy_gating: bool, num_experts: int, kernel_size: int, hidden_size: int, k: int, dropout_rate: float = 0.1, activation: str = '', **kwargs)¶
Bases:
Base
Initializes the model with the specified parameters. https://github.com/decisionintelligence/DUET
- Parameters:
factor (int) – The factor for attention scaling. NOT USED but in the original implementation
d_model (int) – The dimensionality of the model.
n_head (int) – The number of attention heads.
n_layer (int) – The number of layers in the encoder.
CI (bool) – Perform channel independent operations.
d_ff (int) – The dimensionality of the feedforward layer.
noisy_gating (bool) – Flag to indicate if noisy gating is used.
num_experts (int) – The number of experts in the mixture of experts.
kernel_size (int) – The size of the convolutional kernel.
hidden_size (int) – The size of the hidden layer.
k (int) – The number of clusters for the linear extractor.
dropout_rate (float, optional) – The dropout rate. Defaults to 0.1.
activation (str, optional) – The activation function to use. Defaults to ‘’.
**kwargs – Additional keyword arguments.
- Raises:
ValueError – If the activation function is not recognized.
- description = 'Can handle multivariate output \nCan handle future covariates\nCan handle categorical covariates\nCan handle Quantile loss function'¶
- forward(batch: dict) float ¶
Forlward method used during the training loop
- Parameters:
batch (dict) – the batch structure. The keys are: y : the target variable(s). This is always present x_num_past: the numerical past variables. This is always present x_num_future: the numerical future variables x_cat_past: the categorical past variables x_cat_future: the categorical future variables idx_target: index of target features in the past array
- Returns:
output of the mode;
- Return type:
torch.tensor
- handle_categorical_variables = True¶
- handle_future_covariates = True¶
- handle_multivariate = True¶
- handle_quantile_loss = True¶
- class dsipts.ITransformer(hidden_size: int, d_model: int, n_head: int, n_layer_decoder: int, use_norm: bool, class_strategy: str = 'projection', dropout_rate: float = 0.1, activation: str = '', **kwargs)¶
Bases:
Base
Initialize the ITransformer model for time series forecasting.
This class implements the Inverted Transformer architecture as described in the paper “ITRANSFORMER: INVERTED TRANSFORMERS ARE EFFECTIVE FOR TIME SERIES FORECASTING” (https://arxiv.org/pdf/2310.06625).
- Parameters:
hidden_size (int) – The first embedding size of the model (‘r’ in the paper).
d_model (int) – The second embedding size (r^{tilda} in the model). Should be smaller than hidden_size.
n_head (int) – The number of attention heads.
n_layer_decoder (int) – The number of layers in the decoder.
use_norm (bool) – Flag to indicate whether to use normalization.
class_strategy (str, optional) – The strategy for classification, can be ‘projection’, ‘average’, or ‘cls_token’. Defaults to ‘projection’.
dropout_rate (float, optional) – The dropout rate for regularization. Defaults to 0.1.
activation (str, optional) – The activation function to be used. Defaults to ‘’.
**kwargs – Additional keyword arguments.
- Raises:
ValueError – If the activation function is not recognized.
- description = 'Can handle multivariate output \nCan handle future covariates\nCan handle categorical covariates\nCan handle Quantile loss function'¶
- forecast(x_enc, x_mark_enc, x_dec, x_mark_dec)¶
- forward(batch: dict) float ¶
Forlward method used during the training loop
- Parameters:
batch (dict) – the batch structure. The keys are: y : the target variable(s). This is always present x_num_past: the numerical past variables. This is always present x_num_future: the numerical future variables x_cat_past: the categorical past variables x_cat_future: the categorical future variables idx_target: index of target features in the past array
- Returns:
output of the mode;
- Return type:
torch.tensor
- handle_categorical_variables = True¶
- handle_future_covariates = True¶
- handle_multivariate = True¶
- handle_quantile_loss = True¶
- class dsipts.Informer(d_model: int, hidden_size: int, n_layer_encoder: int, n_layer_decoder: int, mix: bool = True, activation: str = 'torch.nn.ReLU', remove_last=False, attn: str = 'prob', distil: bool = True, factor: int = 5, n_head: int = 1, dropout_rate: float = 0.1, **kwargs)¶
Bases:
Base
Initialize the model with specified parameters. hhttps://github.com/zhouhaoyi/Informer2020/tree/main/models
- Parameters:
d_model (int) – The dimensionality of the model.
hidden_size (int) – The size of the hidden layers.
n_layer_encoder (int) – The number of layers in the encoder.
n_layer_decoder (int) – The number of layers in the decoder.
mix (bool, optional) – Whether to use mixed attention. Defaults to True.
activation (str, optional) – The activation function to use. Defaults to ‘torch.nn.ReLU’.
remove_last (bool, optional) – Whether to remove the last layer. Defaults to False.
attn (str, optional) – The type of attention mechanism to use. Defaults to ‘prob’.
distil (bool, optional) – Whether to use distillation. Defaults to True.
factor (int, optional) – The factor for attention. Defaults to 5.
n_head (int, optional) – The number of attention heads. Defaults to 1.
dropout_rate (float, optional) – The dropout rate. Defaults to 0.1.
**kwargs – Additional keyword arguments.
- Raises:
ValueError – If any of the parameters are invalid.
Notes
Ensure to set up split_params: shift: ${model_configs.future_steps} as it is required!!
- description = 'Can handle multivariate output \nCan handle future covariates\nCan handle categorical covariates\nCan handle Quantile loss function'¶
- forward(batch)¶
Forlward method used during the training loop
- Parameters:
batch (dict) – the batch structure. The keys are: y : the target variable(s). This is always present x_num_past: the numerical past variables. This is always present x_num_future: the numerical future variables x_cat_past: the categorical past variables x_cat_future: the categorical future variables idx_target: index of target features in the past array
- Returns:
output of the mode;
- Return type:
torch.tensor
- handle_categorical_variables = True¶
- handle_future_covariates = True¶
- handle_multivariate = True¶
- handle_quantile_loss = True¶
- class dsipts.LinearTS(kernel_size: int, hidden_size: int, dropout_rate: float = 0.1, activation: str = 'torch.nn.ReLU', kind: str = 'linear', use_bn: bool = False, simple: bool = False, **kwargs)¶
Bases:
Base
Initialize the model with specified parameters. Linear model from https://github.com/cure-lab/LTSF-Linear/blob/main/run_longExp.py
- Parameters:
kernel_size (int) – Kernel dimension for the initial moving average.
hidden_size (int) – Hidden size of the linear block.
dropout_rate (float, optional) – Dropout rate in Dropout layers. Default is 0.1.
activation (str, optional) – Activation function in PyTorch. Default is ‘torch.nn.ReLU’.
kind (str, optional) – Type of model, can be ‘linear’, ‘dlinear’ (de-trending), or ‘nlinear’ (differential). Defaults to ‘linear’.
use_bn (bool, optional) – If True, Batch Normalization layers will be added and Dropouts will be removed. Default is False.
simple (bool, optional) – If True, the model used is the same as illustrated in the paper; otherwise, a more complex model with the same idea is used. Default is False.
**kwargs – Additional keyword arguments for the parent class.
- Raises:
ValueError – If an invalid activation function is provided.
- description = 'Can handle multivariate output \nCan handle future covariates\nCan handle categorical covariates\nCan handle Quantile loss function\n THE SIMPLE IMPLEMENTATION DOES NOT USE CATEGORICAL NOR FUTURE VARIABLES'¶
- forward(batch)¶
Forlward method used during the training loop
- Parameters:
batch (dict) – the batch structure. The keys are: y : the target variable(s). This is always present x_num_past: the numerical past variables. This is always present x_num_future: the numerical future variables x_cat_past: the categorical past variables x_cat_future: the categorical future variables idx_target: index of target features in the past array
- Returns:
output of the mode;
- Return type:
torch.tensor
- handle_categorical_variables = True¶
- handle_future_covariates = True¶
- handle_multivariate = True¶
- handle_quantile_loss = True¶
- class dsipts.Monash(filename: str, baseUrl: str = 'https://forecastingdata.org/', rebuild: bool = False)¶
Bases:
object
Class for downloading datasets listed here https://forecastingdata.org/
- Parameters:
filename (str) – name of the class, used for saving
baseUrl (str, optional) – url to the source page. Defaults to ‘https://forecastingdata.org/’.
rebuild (bool, optional) – if true the table will be loaded from the webpage otherwise it will be loaded from the saved file. Defaults to False.
- download_dataset(path: str, id: int, rebuild=False) None ¶
download a specific dataset
- Parameters:
path (str) – path in which save the data
id (int) – id of the dataset
rebuild (bool, optional) – if true the dataset will be re-downloaded. Defaults to False.
- generate_dataset(id: int) None | DataFrame ¶
Parse the id-th dataset in a convient format and return a pandas dataset
- Parameters:
id (int) – id of the dataset
- Returns:
dataframe
- Return type:
None or pd.DataFrame
- load(filename: str) None ¶
Load a monarch structure
- Parameters:
filename (str) – filename to load
- save(filename: str) None ¶
Save the monarch structure
- Parameters:
filename (str) – name of the file to generate
- class dsipts.PatchTST(d_model: int, patch_len: int, kernel_size: int, decomposition: bool = True, activation: str = 'torch.nn.ReLU', n_head: int = 1, n_layer: int = 2, stride: int = 8, remove_last: bool = False, hidden_size: int = 1048, dropout_rate: float = 0.1, **kwargs)¶
Bases:
Base
Initializes the model with specified parameters.https://github.com/yuqinie98/PatchTST/blob/main/
- Parameters:
d_model (int) – The dimensionality of the model.
patch_len (int) – The length of the patches.
kernel_size (int) – The size of the kernel for convolutional layers.
decomposition (bool, optional) – Whether to use decomposition. Defaults to True.
activation (str, optional) – The activation function to use. Defaults to ‘torch.nn.ReLU’.
n_head (int, optional) – The number of attention heads. Defaults to 1.
n_layer (int, optional) – The number of layers in the model. Defaults to 2.
stride (int, optional) – The stride for convolutional layers. Defaults to 8.
remove_last (bool, optional) – Whether to remove the last layer. Defaults to False.
hidden_size (int, optional) – The size of the hidden layers. Defaults to 1048.
dropout_rate (float, optional) – The dropout rate for regularization. Defaults to 0.1.
**kwargs – Additional keyword arguments.
- Raises:
ValueError – If the activation function is not recognized.
- description = 'Can handle multivariate output \nCan NOT handle future covariates\nCan handle categorical covariates\nCan handle Quantile loss function'¶
- forward(batch)¶
Forlward method used during the training loop
- Parameters:
batch (dict) – the batch structure. The keys are: y : the target variable(s). This is always present x_num_past: the numerical past variables. This is always present x_num_future: the numerical future variables x_cat_past: the categorical past variables x_cat_future: the categorical future variables idx_target: index of target features in the past array
- Returns:
output of the mode;
- Return type:
torch.tensor
- handle_categorical_variables = True¶
- handle_future_covariates = False¶
- handle_multivariate = True¶
- handle_quantile_loss = True¶
- class dsipts.Persistent(**kwargs)¶
Bases:
Base
Simple persistent model aligned with all the other
- description = 'Can handle multivariate output \nCan NOT handle future covariates\nCan NOT handle categorical covariates\nCan NOT handle Quantile loss function'¶
- forward(batch)¶
Forlward method used during the training loop
- Parameters:
batch (dict) – the batch structure. The keys are: y : the target variable(s). This is always present x_num_past: the numerical past variables. This is always present x_num_future: the numerical future variables x_cat_past: the categorical past variables x_cat_future: the categorical future variables idx_target: index of target features in the past array
- Returns:
output of the mode;
- Return type:
torch.tensor
- handle_categorical_variables = False¶
- handle_future_covariates = False¶
- handle_multivariate = True¶
- handle_quantile_loss = False¶
- class dsipts.RNN(hidden_RNN: int, num_layers_RNN: int, kind: str, kernel_size: int, activation: str = 'torch.nn.ReLU', remove_last=False, dropout_rate: float = 0.1, use_bn: bool = False, num_blocks: int = 4, bidirectional: bool = True, lstm_type: str = 'slstm', **kwargs)¶
Bases:
Base
Initialize a recurrent model with an encoder-decoder structure.
- Parameters:
hidden_RNN (int) – Hidden size of the RNN block.
num_layers_RNN (int) – Number of RNN layers.
kind (str) – Type of RNN to use, either ‘gru’ or ‘lstm’ or xlstm.
kernel_size (int) – Kernel size in the encoder convolutional block.
activation (str, optional) – Activation function from PyTorch. Default is ‘torch.nn.ReLU’.
remove_last (bool, optional) – If True, the model learns the difference with respect to the last seen point. Default is False.
dropout_rate (float, optional) – Dropout rate in Dropout layers. Default is 0.1.
use_bn (bool, optional) – If True, Batch Normalization layers will be added and Dropouts will be removed. Default is False.
num_blocks (int, optional) – Number of xLSTM blocks (only for xLSTM). Default is 4.
bidirectional (bool, optional) – If True, the RNN is bidirectional. Default is True.
lstm_type (str, optional) – Type of LSTM to use (only for xLSTM), either ‘slstm’ or ‘mlstm’. Default is ‘slstm’.
**kwargs – Additional keyword arguments.
- Raises:
ValueError – If the specified kind is not ‘lstm’, ‘gru’, or ‘xlstm’.
- forward(batch)¶
Forlward method used during the training loop
- Parameters:
batch (dict) – the batch structure. The keys are: y : the target variable(s). This is always present x_num_past: the numerical past variables. This is always present x_num_future: the numerical future variables x_cat_past: the categorical past variables x_cat_future: the categorical future variables idx_target: index of target features in the past array
- Returns:
output of the mode;
- Return type:
torch.tensor
- handle_categorical_variables = True¶
- handle_future_covariates = True¶
- handle_multivariate = True¶
- handle_quantile_loss = True¶
- class dsipts.Samformer(hidden_size: int, use_revin: bool, activation: str = '', **kwargs)¶
Bases:
Base
Initialize the model with specified parameters. Samformer: Unlocking the Potential of Transformers in Time Series Forecasting with Sharpness-Aware Minimization and Channel-Wise Attention. https://arxiv.org/pdf/2402.10198
- Parameters:
hidden_size (int) – The size of the hidden layer.
use_revin (bool) – Flag indicating whether to use RevIN.
activation (str, optional) – The activation function to use. Defaults to ‘’.
**kwargs – Additional keyword arguments passed to the parent class.
- Raises:
ValueError – If the activation function is not recognized.
- description = 'Can handle multivariate output \nCan NOT handle future covariates\nCan NOT handle categorical covariates\nCan NOT handle Quantile loss function'¶
- forward(batch: dict) float ¶
Forlward method used during the training loop
- Parameters:
batch (dict) – the batch structure. The keys are: y : the target variable(s). This is always present x_num_past: the numerical past variables. This is always present x_num_future: the numerical future variables x_cat_past: the categorical past variables x_cat_future: the categorical future variables idx_target: index of target features in the past array
- Returns:
output of the mode;
- Return type:
torch.tensor
- handle_categorical_variables = False¶
- handle_future_covariates = False¶
- handle_multivariate = True¶
- handle_quantile_loss = False¶
- class dsipts.Simple(hidden_size: int, dropout_rate: float = 0.1, activation: str = 'torch.nn.ReLU', **kwargs)¶
Bases:
Base
This is the basic model, each model implemented must overwrite the init method and the forward method. The inference step is optional, by default it uses the forward method but for recurrent network you should implement your own method
- Parameters:
verbose (bool) – Flag to enable verbose logging.
past_steps (int) – Number of past time steps to consider.
future_steps (int) – Number of future time steps to predict.
past_channels (int) – Number of channels in the past input data.
future_channels (int) – Number of channels in the future input data.
out_channels (int) – Number of output channels.
embs_past (List[int]) – List of embedding dimensions for past data.
embs_fut (List[int]) – List of embedding dimensions for future data.
n_classes (int, optional) – Number of classes for classification. Defaults to 0.
persistence_weight (float, optional) – Weight for persistence in loss calculation. Defaults to 0.0.
loss_type (str, optional) – Type of loss function to use (‘l1’ or ‘mse’). Defaults to ‘l1’.
quantiles (List[int], optional) – List of quantiles for quantile loss. Defaults to an empty list.
reduction_mode (str, optional) – Mode for reduction for categorical embedding layer (‘mean’, ‘sum’, ‘none’). Defaults to ‘mean’.
use_classical_positional_encoder (bool, optional) – Flag to use classical positional encoding or using embedding layer also for the positions. Defaults to False.
emb_dim (int, optional) – Dimension of categorical embeddings. Defaults to 16.
optim (Union[str, None], optional) – Optimizer type. Defaults to None.
optim_config (dict, optional) – Configuration for the optimizer. Defaults to None.
scheduler_config (dict, optional) – Configuration for the learning rate scheduler. Defaults to None.
- Raises:
AssertionError – If the number of quantiles is not equal to 3 when quantiles are provided.
AssertionError – If the number of output channels is not 1 for classification tasks.
- description = 'Can handle multivariate output \nCan handle future covariates\nCan handle categorical covariates\nCan handle Quantile loss function\n THE SIMPLE IMPLEMENTATION DOES NOT USE CATEGORICAL NOR FUTURE VARIABLES'¶
- forward(batch)¶
Forlward method used during the training loop
- Parameters:
batch (dict) – the batch structure. The keys are: y : the target variable(s). This is always present x_num_past: the numerical past variables. This is always present x_num_future: the numerical future variables x_cat_past: the categorical past variables x_cat_future: the categorical future variables idx_target: index of target features in the past array
- Returns:
output of the mode;
- Return type:
torch.tensor
- handle_categorical_variables = True¶
- handle_future_covariates = True¶
- handle_multivariate = True¶
- handle_quantile_loss = True¶
- class dsipts.TFT(d_model: int, num_layers_RNN: int, d_head: int, n_head: int, dropout_rate: float, **kwargs)¶
Bases:
Base
Initializes the model for time series forecasting with attention mechanisms and recurrent neural networks.
This model is designed for direct forecasting, allowing for multi-output and multi-horizon predictions. It leverages attention mechanisms to enhance the selection of relevant past time steps and learn long-term dependencies. The architecture includes RNN enrichment, gating mechanisms to minimize the impact of irrelevant variables, and the ability to output prediction intervals through quantile regression.
Key features include: - Direct Model: Predicts all future steps at once. - Multi-Output Forecasting: Capable of predicting one or more variables simultaneously. - Multi-Horizon Forecasting: Predicts variables at multiple future time steps. - Attention-Based Mechanism: Enhances the selection of relevant past time steps and learns long-term dependencies. - RNN Enrichment: Utilizes LSTM for initial autoregressive approximation, which is refined by the rest of the network. - Gating Mechanisms: Reduces the contribution of irrelevant variables. - Prediction Intervals: Outputs percentiles (e.g., 10th, 50th, 90th) at each time step.
The model also facilitates interpretability by identifying: - Global importance of variables for both past and future. - Temporal patterns. - Significant events.
- Parameters:
d_model (int) – General hidden dimension across the network, adjustable in sub-networks.
num_layers_RNN (int) – Number of layers in the recurrent neural network (LSTM).
d_head (int) – Dimension of each attention head.
n_head (int) – Number of attention heads.
dropout_rate (float) – Dropout rate applied uniformly across all dropout layers.
**kwargs – Additional keyword arguments for further customization.
- description = 'Can handle multivariate output \nCan handle future covariates\nCan handle categorical covariates\nCan handle Quantile loss function'¶
- forward(batch: dict) Tensor ¶
Temporal Fusion Transformer
Collectiong Data - Extract the autoregressive variable(s) - Embedding and compute a first approximated prediction - ‘summary_past’ and ‘summary_fut’ collecting data about past and future Concatenating on the dimension 2 all different datas, which will be mixed through a MEAN over that imension Info get from other tensor of the batch taken as input
TFT actual computations - Residual Connection for y_past and summary_past - Residual Connection for y_fut and summary_fut - GRN1 for past and for fut - ATTENTION(summary_fut, summary_past, y_past) - Residual Connection for attention itself - GRN2 for attention - Residual Connection for attention and summary_fut - Linear for actual values and reshape
- Parameters:
batch (dict) – Keys used are [‘x_num_past’, ‘idx_target’, ‘x_num_future’, ‘x_cat_past’, ‘x_cat_future’]
- Returns:
shape [B, self.future_steps, self.out_channels, self.mul] or [B, self.future_steps, self.out_channels] according to quantiles
- Return type:
torch.Tensor
- handle_categorical_variables = True¶
- handle_future_covariates = True¶
- handle_multivariate = True¶
- handle_quantile_loss = True¶
- remove_var(tensor: Tensor, indexes_to_exclude: int, dimension: int) Tensor ¶
Function to remove variables from tensors in chosen dimension and position
- Parameters:
tensor (torch.Tensor) – starting tensor
indexes_to_exclude (int) – index of the chosen dimension we want t oexclude
dimension (int) – dimension of the tensor on which we want to work
- Returns:
new tensor without the chosen variables
- Return type:
torch.Tensor
- class dsipts.TIDE(hidden_size: int, d_model: int, n_add_enc: int, n_add_dec: int, dropout_rate: float, activation: str = '', **kwargs)¶
Bases:
Base
Initializes the model with specified parameters for a neural network architecture. Long-term Forecasting with TiDE: Time-series Dense Encoder https://arxiv.org/abs/2304.08424
- Parameters:
hidden_size (int) – The size of the hidden layers.
d_model (int) – The dimensionality of the model.
n_add_enc (int) – The number of additional encoder layers.
n_add_dec (int) – The number of additional decoder layers.
dropout_rate (float) – The dropout rate to be applied in the layers.
activation (str, optional) – The activation function to be used. Defaults to an empty string.
**kwargs – Additional keyword arguments passed to the parent class.
- description = 'Can handle multivariate output \nCan handle future covariates\nCan handle categorical covariates\nCan handle Quantile loss function'¶
- forward(batch: dict) float ¶
training process of the diffusion network
- Parameters:
batch (dict) – variables loaded
- Returns:
total loss about the prediction of the noises over all subnets extracted
- Return type:
float
- handle_categorical_variables = True¶
- handle_future_covariates = True¶
- handle_multivariate = True¶
- handle_quantile_loss = True¶
- remove_var(tensor: Tensor, indexes_to_exclude: list, dimension: int) Tensor ¶
Function to remove variables from tensors in chosen dimension and position
- Parameters:
tensor (torch.Tensor) – starting tensor
indexes_to_exclude (list) – index of the chosen dimension we want t oexclude
dimension (int) – dimension of the tensor on which we want to work (not list od dims!!)
- Returns:
new tensor without the chosen variables
- Return type:
torch.Tensor
- class dsipts.TTM(model_path: str, past_steps: int, future_steps: int, freq_prefix_tuning: bool, freq: str, prefer_l1_loss: bool, prefer_longer_context: bool, loss_type: str, num_input_channels, prediction_channel_indices, exogenous_channel_indices, decoder_mode, fcm_context_length, fcm_use_mixer, fcm_mix_layers, fcm_prepend_past, enable_forecast_channel_mixing, out_channels: int, embs: List[int], remove_last=False, optim: str | None = None, optim_config: dict = None, scheduler_config: dict = None, verbose=False, use_quantiles=False, persistence_weight: float = 0.0, quantiles: List[int] = [], **kwargs)¶
Bases:
Base
TODO and FIX for future and past categorical variables
- Parameters:
model_path (str) – _description_
past_steps (int) – _description_
future_steps (int) – _description_
freq_prefix_tuning (bool) – _description_
freq (str) – _description_
prefer_l1_loss (bool) – _description_
loss_type (str) – _description_
num_input_channels (_type_) – _description_
prediction_channel_indices (_type_) – _description_
exogenous_channel_indices (_type_) – _description_
decoder_mode (_type_) – _description_
fcm_context_length (_type_) – _description_
fcm_use_mixer (_type_) – _description_
fcm_mix_layers (_type_) – _description_
fcm_prepend_past (_type_) – _description_
enable_forecast_channel_mixing (_type_) – _description_
out_channels (int) – _description_
embs (List[int]) – _description_
remove_last (bool, optional) – _description_. Defaults to False.
optim (Union[str,None], optional) – _description_. Defaults to None.
optim_config (dict, optional) – _description_. Defaults to None.
scheduler_config (dict, optional) – _description_. Defaults to None.
verbose (bool, optional) – _description_. Defaults to False.
use_quantiles (bool, optional) – _description_. Defaults to False.
persistence_weight (float, optional) – _description_. Defaults to 0.0.
quantiles (List[int], optional) – _description_. Defaults to [].
- forward(batch)¶
Forlward method used during the training loop
- Parameters:
batch (dict) – the batch structure. The keys are: y : the target variable(s). This is always present x_num_past: the numerical past variables. This is always present x_num_future: the numerical future variables x_cat_past: the categorical past variables x_cat_future: the categorical future variables idx_target: index of target features in the past array
- Returns:
output of the mode;
- Return type:
torch.tensor
- class dsipts.TimeSeries(name: str, stacked: bool = False)¶
Bases:
object
Class for generating time series object. If you don’t have any time series you can build one fake timeseries using some helping classes (Categorical for instance).
- Parameters:
name (str) – name of the series
stacked (bool) – if true it is a stacked model
- Usage:
For example we can generate a toy timeseries:
add a multiplicative categorical feature (weekly)
>>> settimana = Categorical('settimanale',1,[1,1,1,1,1,1,1],7,'multiplicative',[0.9,0.8,0.7,0.6,0.5,0.99,0.99])
an additive montly feature (here a year is composed by 5 months)
>>> mese = Categorical('mensile',1,[31,28,20,10,33],5,'additive',[10,20,-10,20,0])
a spotted categorical variable that happens every 100 days and lasts 1 day
>>> spot = Categorical('spot',100,[7],1,'additive',[10])
>>> ts = TimeSeries('prova')
>>> ts.generate_signal(length = 5000,categorical_variables = [settimana,mese,spot],noise_mean=1,type=0) ##we can add also noise
>>> ts.plot()
- create_data_loader(data: DataFrame, past_steps: int, future_steps: int, shift: int = 0, keep_entire_seq_while_shifting: bool = False, starting_point: None | dict = None, skip_step: int = 1, is_inference: bool = False) MyDataset ¶
Create the dataset for the training/inference step
- Parameters:
data (pd.DataFrame) – input dataset, usually a subset of self.data
past_steps (int) – past context length
future_steps (int) – future lags to predict
shift (int, optional) – if >0 the future input variables will be shifted (categorical and numerical). For example for attention model it is better to start with a know value of y and use it during the process. Defaults to 0.
keep_entire_seq_while_shifting (bool, optional) – if the dataset is shifted, you may want the future data be of length future_step+shift (like informer), default false
starting_point (Union[None,dict], optional) – a dictionary indicating if a sample must be considered. It is checked for the first lag in the future (useful in the case your model has to predict only starting from hour 12). Defaults to None.
skip_step (int, optional) – list of the categortial variables (same for past and future). Usual there is a skip of one between two saples but for debugging or training time purposes you can skip some samples. Defaults to 1.
- Returns:
- class that extends torch.utils.data.Dataset (see utils)
keys of a batch: y : the target variable(s) x_num_past: the numerical past variables x_num_future: the numerical future variables x_cat_past: the categorical past variables x_cat_future: the categorical future variables idx_target: index of target features in the past array
- Return type:
- enrich(dataset, columns)¶
- generate_signal(length: int = 5000, categorical_variables: List[Categorical] = [], noise_mean: int = 1, type: int = 0) None ¶
This will generate a syntetic signal with a selected length, a noise level and some categorical variables. The additive series are added at the end while the multiplicative series acts on the original signal The TS structure will be populated
- Parameters:
length (int, optional) – length of the signal. Defaults to 5000.
categorical_variables (List[Categorical], optional) – list of Categorical variables. Defaults to [].
noise_mean (int, optional) – variance of the noise to add at the end. Defaults to 1.
type (int, optional) – type of the timeseries (only type=0 available right now). Defaults to 0.
- inference(batch_size: int = 100, num_workers: int = 4, split_params: None | dict = None, rescaling: bool = True, data: DataFrame = None, steps_in_future: int = 0, check_holes_and_duplicates: bool = True, is_inference: bool = False) DataFrame ¶
similar to inference_on_set only change is split_params that must contain this keys but using the default can be sufficient: ‘past_steps’,’future_steps’,’shift’,’keep_entire_seq_while_shifting’,’starting_point’
skip_step is set to 1 for convenience (generally you want all the predictions) You can set split_params to None and use the standard parameters (at your own risck)
- Parameters:
batch_size (int, optional) – see inference_on_set. Defaults to 100.
num_workers (int, optional) – inference_on_set. Defaults to 4.
split_params (Union[None,dict], optional) – inference_on_set. Defaults to None.
rescaling (bool, optional) – inference_on_set. Defaults to True.
data (pd.DataFrame, optional) – startin dataset. Defaults to None.
steps_in_future (int, optional) – if>0 the dataset is extendend in order to make predictions in the future. Defaults to 0.
check_holes_and_duplicates (bool, optional) – if False the routine does not check for holes or for duplicates, set to False for stacked model. Defaults to True.
- Returns:
predicted values
- Return type:
pd.DataFrame
- inference_on_set(batch_size: int = 100, num_workers: int = 4, split_params: None | dict = None, set: str = 'test', rescaling: bool = True, data: None | Dataset = None) DataFrame ¶
This function allows to get the prediction on a particular set (train, test or validation).
- Parameters:
batch_size (int, optional) – barch sise. Defaults to 100.
num_workers (int, optional) – num workers. Defaults to 4.
split_params (Union[None,dict], optional) – if not None the spliting procedure will use the given data otherwise it will use the same configuration used in train. Defaults to None.
set (str, optional) – trai, validation or test. Defaults to ‘test’.
rescaling (bool, optional) – If rescaling is true the output will be rescaled to the initial values. . Defaults to True.
data (None or pd.DataFrame, optional)
- Returns:
the predicted values in a pandas format
- Return type:
pd.DataFrame
- load(model: Base, filename: str, load_last: bool = True, dirpath: str | None = None, weight_path: str | None = None) None ¶
Load a saved model
- Parameters:
model (Base) – class of the model to load (it will be initiated by pytorch-lightening)
filename (str) – filename of the saved model
load_last (bool, optional) – if true the last checkpoint will be loaded otherwise the best (in the validation set). Defaults to True.
dirpath (Union[str,None], optional) – if None we asssume that the model is loaded from the same pc where it has been trained, otherwise we can pass the dirpath where all the stuff has been saved . Defaults to None.
weight_path (Union[str, None], optional) – if None the standard path will be used. Defaults to None.
- load_signal(data: DataFrame, enrich_cat: List[str] = [], past_variables: List[str] = [], future_variables: List[str] = [], target_variables: List[str] = [], cat_past_var: List[str] = [], cat_fut_var: List[str] = [], check_past: bool = True, group: None | str = None, check_holes_and_duplicates: bool = True, silly_model: bool = False) None ¶
- This is a crucial point in the data structure. We expect here to have a dataset with time as timestamp.
- There are some checks:
1- the duplicates will tbe removed taking the first instance
2- the frequency will the inferred taking the minumum time distance between samples
3- the dataset will be filled completing the missing timestamps
- Parameters:
data (pd.DataFrame) – input dataset the column indicating the time must be called time
enrich_cat (List[str], optional) – it is possible to let this function enrich the dataset for example adding the standard columns: hour, dow, month and minute. Defaults to [].
past_variables (List[str], optional) – list of column names of past variables not available for future times . Defaults to [].
future_variables (List[str], optional) – list of future variables available for tuture times. Defaults to [].
target_variables (List[str], optional) – list of the target variables. They will added to past_variables by default unless check_past is false. Defaults to [].
cat_past_var (List[str], optional) – list of the past categorical variables. Defaults to [].
cat_future_var (List[str], optional) – list of the future categorical variables. Defaults to [].
check_past (bool, optional) – see target_variables. Defaults to True.
group (str or None, optional) – if not None the time serie dataset is considered composed by omogeneus timeseries coming from different realization (for example point of sales, cities, locations) and the relative series are not splitted during the sample generation. Defaults to None
check_holes_and_duplicates (bool, optional) – if False duplicates or holes will not checked, the dataloader can not correctly work, disable at your own risk. Defaults True
silly_model (bool, optional) – if True, target variables will be added to the pool of the future variables. This can be useful to see if information passes throught the decoder part of your model (if any)
- plot()¶
Easy way to control the loaded data :returns: figure of the target variables :rtype: plotly.graph_objects._figure.Figure
- save(filename: str) None ¶
save the timeseries object
- Parameters:
filename (str) – name of the file
- set_model(model: Base, config: dict = None, custom_init: bool = False)¶
Set the model to train
- Parameters:
model (Base) – see models
config (dict, optional) – usually the configuration used by the model. Defaults to None.
custom_init (bool, optional) – if true a custom initialization paradigm will be used (see weight_init in models/utils.py ) .
- set_verbose(verbose: bool)¶
- split_for_train(perc_train: float | None = 0.6, perc_valid: float | None = 0.2, range_train: List[datetime | str] | None = None, range_validation: List[datetime | str] | None = None, range_test: List[datetime | str] | None = None, past_steps: int = 100, future_steps: int = 20, shift: int = 0, keep_entire_seq_while_shifting: bool = False, starting_point: None | dict = None, skip_step: int = 1, normalize_per_group: bool = False, check_consecutive: bool = True, scaler: str = 'StandardScaler()') List[DataLoader] ¶
Split the data and create the datasets.
- Parameters:
perc_train (Union[float,None], optional) – fraction of the training set. Defaults to 0.6.
perc_valid (Union[float,None], optional) – fraction of the test set. Defaults to 0.2.
range_train (Union[List[Union[datetime, str]],None], optional) – a list of two elements indicating the starting point and end point of the training set (string date style or datetime). Defaults to None.
range_validation (Union[List[Union[datetime, str]],None], optional) – a list of two elements indicating the starting point and end point of the validation set (string date style or datetime). Defaults to None.
range_test (Union[List[Union[datetime, str]],None], optional) – a list of two elements indicating the starting point and end point of the test set (string date style or datetime). Defaults to None.
past_steps (int, optional) – past step to consider for making the prediction. Defaults to 100.
future_steps (int, optional) – future step to predict. Defaults to 20.
shift (int, optional) – see create_data_loader. Defaults to 0.
keep_entire_seq_while_shifting (bool, optional) – if the dataset is shifted, you may want the future data be of length future_step+shift (like informer), default false
starting_point (Union[None, dict], optional) – see create_data_loader. Defaults to None.
skip_step (int, optional) – see create_data_loader. Defaults to 1.
normalize_per_group (boolean, optional) – if true and self.group is not None, the variables are scaled respect to the groups. Default False
check_consecutive (boolean, optional) – if false it skips the check on the consecutive ranges. Default True
scaler – instance of a sklearn.preprocessing scaler. Default ‘StandardScaler()’
- Returns:
three dataloader used for training or inference
- Return type:
List[DataLoader,DataLoader,DataLoadtrainer]
- train_model(dirpath: str, split_params: dict, batch_size: int = 100, num_workers: int = 4, max_epochs: int = 500, auto_lr_find: bool = True, gradient_clip_val: float | None = None, gradient_clip_algorithm: str = 'value', devices: str | List[int] = 'auto', precision: str | int = 32, modifier: None | str = None, modifier_params: None | dict = None, seed: int = 42) float ¶
Train the model
- Parameters:
dirpath (str) – path where to put all the useful things
split_params (dict) – see split_for_train
batch_size (int, optional) – batch size. Defaults to 100.
num_workers (int, optional) – num_workers for the dataloader. Defaults to 4.
max_epochs (int, optional) – maximum epochs to perform. Defaults to 500.
auto_lr_find (bool, optional) – find initial learning rate, see pytorch-lightening. Defaults to True.
gradient_clip_val (Union[float,None], optional) – gradient_clip_val. Defaults to None. See https://lightning.ai/docs/pytorch/stable/advanced/training_tricks.html
gradient_clip_algorithm (str, optional) – gradient_clip_algorithm. Defaults to ‘norm ‘. See https://lightning.ai/docs/pytorch/stable/advanced/training_tricks.html
devices (Union[str,List[int]], optional) – devices to use. Use auto if cpu or the list of gpu to use otherwise. Defaults to ‘auto’.
precision (Union[str,int], optional) – precision to use. Usually 32 bit is fine but for larger model you should try ‘bf16’. If ‘auto’ it will use bf16 for GPU and 32 for cpu
modifier (Union[str,int], optional) – if not None a modifier is applyed to the dataloader. Sometimes lightening has very restrictive rules on the dataloader, or we want to use a ML model before or after the DL model (See readme for more information)
modifier_params (Union[dict,int], optional) – parameters of the modifier
seed (int, optional) – seed for reproducibility
- class dsipts.TimeXER(patch_len: int, d_model: int, n_head: int, d_ff: int = 512, dropout_rate: float = 0.1, n_layer_decoder: int = 1, activation: str = '', **kwargs)¶
Bases:
Base
Initialize the model with specified parameters. https://github.com/thuml/Time-Series-Library/blob/main/models/TimeMixer.py
- Parameters:
patch_len (int) – Length of the patches.
d_model (int) – Dimension of the model.
n_head (int) – Number of attention heads.
d_ff (int, optional) – Dimension of the feedforward network. Defaults to 512.
dropout_rate (float, optional) – Dropout rate for regularization. Defaults to 0.1.
n_layer_decoder (int, optional) – Number of layers in the decoder. Defaults to 1.
activation (str, optional) – Activation function to use. Defaults to ‘’.
**kwargs – Additional keyword arguments passed to the superclass.
- Raises:
ValueError – If an invalid activation function is provided.
- description = 'Can handle multivariate output \nCan handle future covariates\nCan handle categorical covariates\nCan handle Quantile loss function'¶
- forward(batch: dict) float ¶
Forlward method used during the training loop
- Parameters:
batch (dict) – the batch structure. The keys are: y : the target variable(s). This is always present x_num_past: the numerical past variables. This is always present x_num_future: the numerical future variables x_cat_past: the categorical past variables x_cat_future: the categorical future variables idx_target: index of target features in the past array
- Returns:
output of the mode;
- Return type:
torch.tensor
- handle_categorical_variables = True¶
- handle_future_covariates = True¶
- handle_multivariate = True¶
- handle_quantile_loss = True¶
- class dsipts.VQVAEA(past_steps: int, future_steps: int, past_channels: int, future_channels: int, hidden_channels: int, embs: List[int], d_model: int, max_voc_size: int, num_layers: int, dropout_rate: float, commitment_cost: float, decay: float, n_heads: int, out_channels: int, epoch_vqvae: int, persistence_weight: float = 0.0, loss_type: str = 'l1', quantiles: List[int] = [], optim: str | None = None, optim_config: dict = None, scheduler_config: dict = None, **kwargs)¶
Bases:
Base
Custom encoder-decoder
- Parameters:
past_steps (int) – number of past datapoints used
future_steps (int) – number of future lag to predict
past_channels (int) – number of numeric past variables, must be >0
future_channels (int) – number of future numeric variables
embs (List) – list of the initial dimension of the categorical variables
cat_emb_dim (int) – final dimension of each categorical variable
hidden_RNN (int) – hidden size of the RNN block
num_layers_RNN (int) – number of RNN layers
kind (str) – one among GRU or LSTM
kernel_size (int) – kernel size in the encoder convolutional block
sum_emb (bool) – if true the contribution of each embedding will be summed-up otherwise stacked
out_channels (int) – number of output channels
activation (str, optional) – activation fuction function pytorch. Default torch.nn.ReLU
remove_last (bool, optional) – if True the model learns the difference respect to the last seen point
persistence_weight (float) – weight controlling the divergence from persistence model. Default 0
loss_type (str, optional) – this model uses custom losses or l1 or mse. Custom losses can be linear_penalization or exponential_penalization. Default l1,
quantiles (List[int], optional) – we can use quantile loss il len(quantiles) = 0 (usually 0.1,0.5, 0.9) or L1loss in case len(quantiles)==0. Defaults to [].
dropout_rate (float, optional) – dropout rate in Dropout layers
use_bn (bool, optional) – if true BN layers will be added and dropouts will be removed
use_glu (bool,optional) – use GLU for feature selection. Defaults to True.
glu_percentage (float, optiona) – percentage of features to use. Defaults to 1.0.
n_classes (int) – number of classes (0 in regression)
optim (str, optional) – if not None it expects a pytorch optim method. Defaults to None that is mapped to Adam.
optim_config (dict, optional) – configuration for Adam optimizer. Defaults to None.
scheduler_config (dict, optional) – configuration for stepLR scheduler. Defaults to None.
- description = 'Can NOT handle multivariate output \nCan NOT handle future covariates\nCan NOT handle categorical covariates\nCan NOT handle Quantile loss function'¶
- forward(batch)¶
Forlward method used during the training loop
- Parameters:
batch (dict) – the batch structure. The keys are: y : the target variable(s). This is always present x_num_past: the numerical past variables. This is always present x_num_future: the numerical future variables x_cat_past: the categorical past variables x_cat_future: the categorical future variables idx_target: index of target features in the past array
- Returns:
output of the mode;
- Return type:
torch.tensor
- generate(idx, max_new_tokens, temperature=1.0, do_sample=False, top_k=None, num_samples=100)¶
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete the sequence max_new_tokens times, feeding the predictions back into the model each time. Most likely you’ll want to make sure to be in model.eval() mode of operation for this.
- gpt(tokens)¶
- handle_categorical_variables = False¶
- handle_future_covariates = False¶
- handle_multivariate = False¶
- handle_quantile_loss = False¶
- inference(batch: dict) tensor ¶
Usually it is ok to return the output of the forward method but sometimes not (e.g. RNN)
- Parameters:
batch (dict) – batch
- Returns:
result
- Return type:
torch.tensor
- class dsipts.VVA(past_steps: int, future_steps: int, past_channels: int, future_channels: int, embs: List[int], d_model: int, max_voc_size: int, token_split: int, num_layers: int, dropout_rate: float, n_heads: int, out_channels: int, persistence_weight: float = 0.0, loss_type: str = 'l1', quantiles: List[int] = [], optim: str | None = None, optim_config: dict = None, scheduler_config: dict = None, **kwargs)¶
Bases:
Base
Custom encoder-decoder
- Parameters:
past_steps (int) – number of past datapoints used
future_steps (int) – number of future lag to predict
past_channels (int) – number of numeric past variables, must be >0
future_channels (int) – number of future numeric variables
embs (List) – list of the initial dimension of the categorical variables
cat_emb_dim (int) – final dimension of each categorical variable
hidden_RNN (int) – hidden size of the RNN block
num_layers_RNN (int) – number of RNN layers
kind (str) – one among GRU or LSTM
kernel_size (int) – kernel size in the encoder convolutional block
sum_emb (bool) – if true the contribution of each embedding will be summed-up otherwise stacked
out_channels (int) – number of output channels
activation (str, optional) – activation fuction function pytorch. Default torch.nn.ReLU
remove_last (bool, optional) – if True the model learns the difference respect to the last seen point
persistence_weight (float) – weight controlling the divergence from persistence model. Default 0
loss_type (str, optional) – this model uses custom losses or l1 or mse. Custom losses can be linear_penalization or exponential_penalization. Default l1,
quantiles (List[int], optional) – we can use quantile loss il len(quantiles) = 0 (usually 0.1,0.5, 0.9) or L1loss in case len(quantiles)==0. Defaults to [].
dropout_rate (float, optional) – dropout rate in Dropout layers
use_bn (bool, optional) – if true BN layers will be added and dropouts will be removed
use_glu (bool,optional) – use GLU for feature selection. Defaults to True.
glu_percentage (float, optiona) – percentage of features to use. Defaults to 1.0.
n_classes (int) – number of classes (0 in regression)
optim (str, optional) – if not None it expects a pytorch optim method. Defaults to None that is mapped to Adam.
optim_config (dict, optional) – configuration for Adam optimizer. Defaults to None.
scheduler_config (dict, optional) – configuration for stepLR scheduler. Defaults to None.
- configure_optimizers()¶
This long function is unfortunately doing something very simple and is being very defensive: We are separating out all parameters of the model into two buckets: those that will experience weight decay for regularization and those that won’t (biases, and layernorm/embedding weights). We are then returning the PyTorch optimizer object.
- description = 'Can NOT handle multivariate output \nCan NOT handle future covariates\nCan NOT handle categorical covariates\nCan NOT handle Quantile loss function'¶
- forward(batch)¶
Forlward method used during the training loop
- Parameters:
batch (dict) – the batch structure. The keys are: y : the target variable(s). This is always present x_num_past: the numerical past variables. This is always present x_num_future: the numerical future variables x_cat_past: the categorical past variables x_cat_future: the categorical future variables idx_target: index of target features in the past array
- Returns:
output of the mode;
- Return type:
torch.tensor
- generate(idx, max_new_tokens, temperature=1.0, do_sample=False, top_k=None, num_samples=100)¶
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete the sequence max_new_tokens times, feeding the predictions back into the model each time. Most likely you’ll want to make sure to be in model.eval() mode of operation for this.
- handle_categorical_variables = False¶
- handle_future_covariates = False¶
- handle_multivariate = False¶
- handle_quantile_loss = False¶
- inference(batch: dict) tensor ¶
Usually it is ok to return the output of the forward method but sometimes not (e.g. RNN)
- Parameters:
batch (dict) – batch
- Returns:
result
- Return type:
torch.tensor
- dsipts.beauty_string(message: str, type: str, verbose: bool)¶
- dsipts.extend_time_df(x: DataFrame, freq: str | int, group: str | None = None, global_minmax: bool = False) DataFrame ¶
Utility for generating a full dataset and then merge the real data
- Parameters:
x (pd.DataFrame) – dataframe containing the column time
freq (str) – frequency (in pandas notation) of the resulting dataframe
group (string or None) – if not None the min max are computed by the group column, default None
global_minmax (bool) – if True the min_max is computed globally for each group. Usually used for stacked model
- Returns:
a dataframe with the column time ranging from thr minumum of x to the maximum with frequency freq
- Return type:
pd.DataFrame
- dsipts.get_freq(freq) str ¶
Get the frequency based on the string reported. I don’t think there are all the possibilities here
- Parameters:
freq (str) – string coming from
- Returns:
pandas frequency format
- Return type:
str
- dsipts.read_public_dataset(path: str, dataset: str) Tuple[DataFrame, List[str]] ¶
Returns the public dataset chosen. Pleas download the dataset from here https://drive.google.com/drive/folders/1ZOYpTUa82_jCcxIdTmyr0LXQfvaM9vIy or ask to agobbi@fbk.eu.
- Parameters:
path (str) – path to data
dataset (str) – dataset (one of ‘electricity’,’etth1’,’etth2’,’ettm1’,’ettm2’,’exchange_rate’,’illness’,’traffic’,’weather’)
- Returns:
The target variable is y and the time index is time and the list of the covariates
- Return type:
Tuple[pd.DataFrame,List[str]]